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1 Introduction

As formulated by Kristensen (1999) the cup anemometer is probably the most common instrument for
measuring the wind speed at places weather observations are routinely carried out. We see them in airports,
at wind farms, and at construction sites—and for good reasons. Experience has shown the it is a robust and
reliable instrument which can operate unattended for years. Since it is omnidirectional it is easy to install.

The cup anemometer was invented in 1846 by the Irish astronomer Thomas R. Robinson. An interesting ac-
count of its history, including forerunners, has been given by Middleton (1969). The first anemometers had
four cups. This is reflected in the fact that in German the instrument is known as the “Schalenkreuzanemome-
ter”. Also in Danish it is sometimes called “skålkorsanemometer”. The building blocks in these languages
are “Schale”=“skål”=“bowl”/“cup” and “Kreuz”=“kors”=“cross”. The last part of the word indicates that
the cup anemometer originally has four arms. Robinson believed that, provided friction in the bearing can
be neglected, a law of nature implied that the speed of the center of the cup was exactly one third of the
wind speed. The wind speed divided by the speed of the cup was called the factor f . Although this is not
too far from reality, it is by no means true. It reflects, however, the remarkable linearity of the calibration,
even for the first versions of the instruments.

A thorough investigation of the cup anemometer by Patterson (1926) revealed that the factor varied between
2 and 3. In fact, he found that it varied not only from instrument to instrument, but also as a function of
wind speed for a single instrument, albeit to a lesser degree. This of course means that the calibration
cannot be completely linear. His work showed that the linearity is better the larger the ratio of the cup
radius to the arm length. Another conclusion from his work was that anemometers with three cups is better
than cup with four cups because they respond more readily to changes in wind speed.

In the 1920th the cup-anemometer development had led to an instrument with a calibration which had a
calibration which, for all practical purposes, could be considered linear. However, it was noticed that in
turbulent wind, the output signal was larger for a particular mean-wind speed than the output from the same
instrument exposed to a constant wind speed of the same magnitude in a wind tunnel with little turbulence.
This phenomenon was called overspeeding and it was ascribed to the asymmetric response to changes in
the wind speed: for a cup anemometer to work at all, it must respond more readily to an increase than to
a decrease in the wind speed (Kristensen 1993, Kristensen 1999). As a consequence, the time spent above
the mean wind becomes larger than the time spent below, with the result that the mean-wind measurement
will be to large. To analyze the overspeeding it was necessary to understand the dynamics, i.e. the equation
of motion, of the cup anemometer. Schrenk (1929) was, according to Wyngaard (1981), the first to publish
a systematic attempt to model the dynamics of the motion of the cup-anemometer rotor. From the point of
view that it is not possible to describe the detailed air-flow patterns around a moving cup rotor, this model
captured the asymmetry by assigning a larger drag coefficient to the concave than to the convex side of the
cup. Much effort was invested in the exploitation of this model to understand overspeeding. No definite
conclusion was obtained for four decades. Then Wyngaard et al. (1974) decided to set up a pragmatic,
phenomenological model for the equation of motion and for the various wind contributions to the torque
on the cup rotor. These contributions were measured in a wind tunnel. The new data were interpreted
independently by Kaganov & Yaglom (1976) and Busch & Kristensen (1976). They came to the same
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Figure 1: Sketch of the Schrenk model. The rotor has only two cups and shows them in a position where
the driving torque has a maximum where the wind speed with the magnitude U blows directly into the
concave side to the right and at the back side to the left. The rotor has the angular velocity S so that the
speed of the cups is rS, where r is the rotor radius, from the axis to the center of the cups. It is indicated
by the arrow on the circle around the axis that in this case the rotation is counterclockwise.

quantitative result for the effect of the asymmetric rotor response. It had to result in a positive bias of
the wind speed in a turbulent wind. Both Kaganov & Yaglom (1976) and Wyngaard (1981) have given
interesting accounts of the history of overspeeding.

It is generally believed that the overspeeding is entirely due to the asymmetric response. It is true that a
slow cup anemometer with a large moment of inertia of the cup rotor overspeeds more than a light and
small anemometer with a small moment of inertia. However, a more detailed analysis (Kristensen 1993,
Kristensen 1998) shows that in general there are more important contributions to the mean-wind bias one
gets in turbulent winds. The most important are related to the fluctuations in the lateral and the vertical
velocity components. These biases are both proportional to the corresponding variances, which must be
known to correct the mean wind. Further, it is necessary to know the angular response. The ideal angular
response is the so-called cosine response, which means that the anemometer is sensitive only to the wind
component perpendicular to the rotor shaft. If the angular response falls below the cosine response, the
anemometer will actually underspeed.

The following is a discussion of the operation of the cup anemometer and the sources of the biases of mea-
surements of the mean wind in atmospheric flows with different intensities of turbulence. First, however,
we will study some of the properties of the cup anemometer by means of the somewhat oversimplified
model by Schrenk (1929).

2 Consequences of the Schrenk Model

Figure 1 shows the cup rotor of the Schrenk anemometer rotating with the angular velocity S. Of course
this model is an oversimplification when compared to a real anemometer, but it seems to capture the bulk
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properties. The force on each cup is proportional to the square of the relative speed with respect to the wind
speed. The factor of proportionality is the product of the density of air ρ, the cross-sectional area A and
a dimensionless lift/drag coefficient C which depends on the shape of the cup. The figure shows that this
coefficient is larger for the right-hand cup than for the left-hand cup. The lift/drag force on a non-moving
body is

F = 1

2
AρCU 2. (1)

The angular momentum on the rotor can then be written

M = r × 1

2
Aρ

{
C+(U − rS)2 − C−(U + rS)2} , (2)

where C+ and C− are the lift/drag coefficients of the right and left cup, respectively. The angular mo-
mentum can also be written M = IdS/dt in term of the inertial moment of the rotorI and (2) can be
formulated as a differential equation in S

dS

dt
= K+(U − rS)2 − K−(U + rS)2, (3)

where

K+/− = rAρ

2I
C+/− (4)

with the dimension of length to the power -2.

When the rotor has a constant angular velocity in a constant wind the left-hand side is zero. This is possible
only if

K+ > K−. (5)

Solving

0 = K+(U − rS)2 − K−(U + rS)2, (6)

for S, we obtain the calibration, i.e. S as a function of U ,

f ≡ U

rS
=

√
K+ + √

K−√
K+ − √

K−
(7)

in terms of the aforementioned factor f‡.
‡There are actually two solutions to (6), but one must be excluded because it corresponds to the cups having a speed large than

the wind.
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Now we may analyze the equation of motion (3) in the case where the wind speed is increased by a small
amount. Initially S is unchanged, but is not the case for its time derivative. Instead of (3) we now have

dS

dt
= K+(U + u − rS)2 − K−(U + u + rS)2. (8)

To the first order in u this can be written

dS

dt
= K+(U − rS)2 − K−(U + rS)2︸ ︷︷ ︸

=0

+2 {K+(U − rS) − K−(U + rS)} u + (K+ − K−)u2. (9)

Obviously, the first term on the right-hand side is zero by virtue of (6). This means that

√
K+(U − rS) = √

K−(U + rS) (10)

which, combined with (3), implies

K+(U − rS) > K−(U + rS). (11)

In other words, in the perturbation equation (9) the coefficients to both u and u2 are positive. The impli-
cation is that when u is positive, corresponding to increased wind speed, the angular acceleration dS/dt

is larger than when u is negative. The rotor picks up speed in response to a wind-speed increase more
readily than it brakes at a wind-speed decrease of the same n magnitude. This reveals the source of the
overspeeding, but a more realistic physical model is needed to quantify it. We return to that later. First,
however, we must discuss the tools we need about velocity turbulence.

The following three section might be considered heavy going, and the reader, not interested in detailed
documentation, may get the information needed by skipping to the section 7.

3 Entr’acte: Standard Tools in Turbulence Analysis

We consider a turbulent, statistically homogeneous and stationary velocity field ũ(x, t) as a function of
position in space x and time t . The mean wind speed U of is considered constant in time and direction
and defines one direction in a Cartesian coordinate system. Let this direction be defined by the unit vector
i1. The unit vectors i2 and i3 are perpendicular to one another and to i1. These three vectors define our
coordinate system. Indication averaging by brackets (〈〉) we therefore have

〈̃u(x, t)〉 = U × i1. (12)

We make a Galilean coordinate transformation with the velocity U × i1 and assume Taylor’s “frozen
turbulence” hypothesis§ . In the new coordinate system the random velocity field u is, informally stated,

§In an informal way it states that all (rapid and turbulent) temporal fluctuations at a given point are entirely made up of “stiff”
spatial velocity fluctuations which are carried through the point by the mean wind.
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not a function of time. The argument t is consequently omitted. In this way Taylor’s hypothesis can be
formulated

u(x) = ũ(x − Ut × i1, 0) − U × i1. (13)

It can be written with its three components as

u(x) = u1(x)i1 + u2(x)i2 + u3(x)i3, (14)

where

x = x1i1 + x2i2 + x3i3. (15)

We assume incompressibility, i.e.

∂ui

∂xi

= 0, (16)

using the usual summation convention to expression with doubly occurring indices.

Finally, the velocity field is considered isotropic in the following.

The ensemble averages of the three velocity components ui are of course zero. The second-order covari-
ances are the elements in the 3 × 3 tensor

Rij (r) = 〈ui(x)uj (x + r)〉, i

j

}
= 1, 2, 3 (17)

where r is the displacement vector. In addition to homogeneity, i.e. translational invariance, and reflection
symmetry we have

Rij (r) = Rji(r) = Rij (−r). (18)

The three diagonal elements are the auto-covariances. In isotropic turbulence there are only the longitudinal
and lateral auto-covariances. They are the longitudinal covariance with the velocity components along the
displacement vector

RL(r) = R11(ri1) = R22(ri2) = R33(ri3) (19)

and the transversal covariance with the velocity components perpendicular to the displacement vector

RT (r) = R11(ri2) = R11(ri3) = R22(ri3) = R22(ri1) = R33(ri1) = R33(ri2). (20)

With these definitions we see that the variance of each velocity component is

σ 2 = RL(0) = RT (0). (21)
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An important quantity is the integral length scale L defined as

L = 1

σ 2

∞∫
0

RL(r)d r. (22)

This length characterizes the distance between where the velocity components become uncorrelated.

It is shown by Lumley & Panofsky (1964) in a rather straightforward way that

RT (r) = RL(r) + r

2

dRL

d r
(23)

and that

Rij (r) = [RL(r) − RT (r)] rirj

r2
+ RT (r) δij , (24)

where δij is Kronecker symbol equal to 1 when the two indices are equal and else 0.

It is often useful to exclude the influence of the large eddies by using the structure-function tensor

Dij (r) = 〈(ui(x + r) − ui(x)(uj (x + r) − uj(x)〉. (25)

This definition implies that

Dij (r) = 2[Rij (0) − Rij (r)] (26)

and

Dij (r) = [DL(r) − DT (r)] rirj

r2
+ DT (r) δij , (27)

where, in analogy to (23),

DT (r) = DL(r) + r

2

dDL

d r
(28)

In wave-number space we obtain the spectral velocity tensor by the three-dimensional Fourier transforma-
tion

Φij (k) = 1

(2π)3

∫
∞

Rij (r) exp(− i k · r) d3r, (29)

where the lower limit ∞ indicates that the integration is taken over the entire space. So we may also write

Rij (r) =
∫
∞

Φij (k) exp( i k · r) d3k (30)

6



as the inverse transformation.

According to Lumley & Panofsky (1964) the spectral tensor has the form

Φij (k) = E(k)

4πk2

{
δij − kikj

k2

}
, (31)

where the scalar function E(k) of k = |k| is the energy spectrum.

There are two one-dimensional spectra, the longitudinal and the transversal spectrum, FL(k) and FT (k),
respectively. They are the counterparts to the covariances RL(r) and RT (r) in physical space, defined by
(19) and (20), and given by

FL(k) = 1

2π

∞∫
−∞

RL(r) e−ikrdr (32)

and

FT (k) = 1

2π

∞∫
−∞

RT (r) e−ikrdr. (33)

We see that another way of writing the integral length scale, defined by (22), is

L = πFL(0)

σ 2
. (34)

For isotropic turbulence there are the useful relations

E(k) = k3 d

dk

{
1

k

dFL

d k

}
(35)

and, corresponding to )23),

FT (k) = 1

2

{
FL(k) − k

dFL

d k

}
. (36)

For small-scale–locally isotropic–turbulence with eddies much smaller than L we have

FL(k) = 9

55
αε2/3k−5/3 (37)

and, by virtue of (36),

FT (k) = 12

55
αε2/3k−5/3 (38)
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where ε is the dissipation rate of specific kinetic energy and where the dimensional constant α � 1.7
(Kristensen et al. 1989). Inserting in (35) we get the energy spectrum

E(k) = αε2/3k−5/3. (39)

Since FL(k) and FL(k) diverge for k → 0 it is not possible to obtain neither RL(r) nor RL(r) by means of
the inverse transformation to (32) and (33):

RL(r) =
∞∫

−∞
FL(k) eikrdk = 2

∞∫
0

FL(k) cos(kr) dk (40)

and

RT (r) =
∞∫

−∞
FT (k) eikrdk = 2

∞∫
0

FT (k) cos(kr) dk. (41)

Of course (40) and (41) are not convergent with the expressions (37) and (38)

The structure functions

DL(r) = 2[RL(0) − RL(r)] (42)

and

DT (r) = 2[RT (0) − RT (r)], (43)

characterizing the turbulence without including the large eddies can be determined by means of (40) and
(41):

DL(r) = 4

∞∫
0

[1 − cos(kr)]FL(k) dk = 27

55



(
1

3

)
α ε2/3 r2/3 (44)

and

DT (r) = 4

∞∫
0

[1 − cos(kr)]FT (k) dk = 36

55



(
1

3

)
α ε2/3 r2/3. (45)

If we need to determine RL(r) or RT (r) we need to include the variance contributions for the all larger
eddies. We may then use the von Kármán spectrum (von Kármán 1948)

FL(k) = 9

55

αε2/3

(q2 + k2)5/6
(46)
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Figure 2: The von Kármán spectrum for the longitudinal velocity component.

for the streamwise velocity component.

Using (36) we see that

FT (k) = 12

55
αε2/3 k2 + 3

8q2

(q2 + k2)11/6
(47)

for the transversal velocity component.

Here q is a wave number characterizing the integral turbulence scale. These spectra are practical model
expressions used by e.g. ESDU83045 (1983). The form makes some theoretical turbulence analyses quite
easy because it contains only one auxiliary parameter q, but is not based on direct experimental evidence.
It shows in a qualitative way the spectral behaviour at small wave numbers as illustrated in Fig. 2. The
energy spectrum

E(k) = αε2/3 k4

(q2 + k2)17/6
. (48)

is again derived from (46) and (35). In the limit q = 0 (46)–(48) become identical to (37)–(39), which of
course are of more general validity.

With the von Kármán formulation we get for the one-component variance

σ 2 = 2

∞∫
0

9

55

αε2/3

(q2 + k2)5/6
dk = 9

55
αε2/3 B(1/2, 1/3)

q2/3
, (49)
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where B(a, b) = 
(a)
(b)/
(a + b) is the beta function. This relation means that we can rewrite (46)
and (47) as

FL(k) = σ 2

B(1/2, 1/3)

q2/3

(q2 + k2)5/6
(50)

and

FT (k) = 4

3

σ 2

B(1/2, 1/3)

q2/3(k2 + 3
8q

2)

(q2 + k2)11/6
. (51)

With the expression (34) for the integral length scale we find by examining (50) the relation

Lq = 1/B(1/2, 1/3) ≈ 0.238. (52)

Instead of (44) and (45) we find accordingly

DL(r) = 2σ 2


(1/3)

{

(1/3) − (4qr)1/3K1/3(qr)

}
(53)

and

DT (r) = 2σ 2


(1/3)

{

(1/3) − (4qr)1/3K1/3(qr) + 1

8
(4qr)4/3K2/3(qr)

}
. (54)

Applying (49) we find that these two last expression are equivalent to (44) and (45) when qr 
 1. When
qr � 1 both DL(r) and DT (r) approach 2σ2 as illustrated by Fig. 3.

We must emphasize that the von Kármán “global” spectral model does not apply to the atmospheric surface
layer where the variances of the longitudinal, lateral and vertical velocity components are not the same.

4 Cup Anemometer Dynamics, Phenomenological Model

Figure 4 shows a generic cup rotor with three cups exposed to a wind field with three components, two
perpendicular to the anemometer axis, ũ and ṽ, and one along the axis w̃. For convenience we have now
changed notation according to (̃u1, ũ2, ũ3) ⇒ (̃u, ṽ, w̃). With the corresponding rate of rotation of the
rotor s̃ (in radians per second) the most general form equation of motion is

˙̃s ≡ d̃s

dt
= F (̃s, h̃, w̃), (55)

where

h̃ =
√

ũ2 + ṽ2 (56)
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Figure 3: Normalized longitudinal and lateral structure functions. The lower curve shows DL(r)/σ 2 and
the upper DT (r)/σ 2 as they are given by (53) and (54), respectively.
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Figure 4: Sketch of a cup-anemometer and indications of the instantaneous wind-velocity components.
Left frame: top view. Right frame: side view.
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is the total component perpendicular to the axis.

In a constant wind without turbulence (wind tunnel) with (̃u, ṽ, w̃) = (U, 0, 0) the rotor will have the
constant angular velocity s̃ = S. Inserting into (55), we get

0 = F(S,U, 0). (57)

This equation defines the calibration which, for a good cup anemometer, can be considered linear, i.e.

S = U − U◦
�

, (58)

where � is the calibration length and U◦ the so-called starting speed. This quantity is usually small, about
0.2–0.3 m/s, so in the study of the cup-anemometer dynamics we set U◦ equal zero. In other words, we
replace (58) by

�S = U, (59)

In the turbulent wind field we decompose s̃ and (̃u, ṽ, w̃) as follows

⎧⎪⎪⎨⎪⎪⎩
s̃

ũ

ṽ

w̃

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
S + s

U + u

v

w

⎫⎪⎪⎬⎪⎪⎭ , (60)

where U is equal to the mean 〈̃u〉 and S is given by (58). We must assume that |s| 
 S, |u| 
 U ,
|v| 
 U , and |w| 
 U for the cup anemometer to operate satisfactorily. An immediate consequence of
this assumption is that to second order we have

h̃ =
√

(U + u)2 + v2 = U

(
1 + 2

u

U
+ u2 + v2

U 2

)1/2

� U

(
1 + 1

2

(
2

u

U
+ u2 + v2

U 2

)
+ (1/2) × (−1/2)

2

(
2

u

U

)2
)

= U + u + v2

2U
(61)

Initially we simplify the model by considering only a horizontally fluctuating wind, i.e. w̃ = 0. The
dynamic equation (55) reduces to

˙̃s = F (̃s, h̃, 0) ≡ G(̃s, h̃) (62)

and (57) to

0 = G(S,U). (63)

12



Expanding (62) to second order in s, u, and v, we get

ṡ = G(S,U)︸ ︷︷ ︸
=0

+∂G

∂S
s + ∂G

∂U

(
u + v2

2U

)

+ 1

2

(
∂2G

∂S2
s2 + 2

∂2G

∂S∂U
su + ∂2G

∂U 2
u2

)
. (64)

All the first and second derivatives are taken at the point (S,U). Neglecting first the second-order terms,
we see that (64) becomes the equation for a first-order, linear filter. Since the solution must be finite, we
infer that ∂G/∂S must be negative. In fact, this derivative determines the filter time-constant τ◦ by

1

τ◦
= −∂G

∂S
. (65)

The function G(S,U) is almost entirely determined by the wind drag force on the rotor and is therefore
proportional to the air density � multiplied by a second-order polynomial in S and U . We see then, with
the aid of (19), that the definition (65) of τ◦ implies that this quantity is inversely proportional to � × U . It
means that the distance

�◦ = Uτ◦ (66)

is independent of the wind speed. We have here introduced the distance constant which, apart from its
dependence of the air density, can be considered an instrument constant, in contrast to the time constant τ◦.

Differentiating (63), we obtain with the aid of (59)

0 = ∂G

∂S

dS

dU
+ ∂G

∂U
= 1

�

∂G

∂S
+ ∂G

∂U
, (67)

so that

∂G

∂U
= 1

�τ◦
. (68)

The first-order filter function can thus be written

ṡ + s

τ◦
= u

�τ◦
. (69)

It is a useful consequence of (69) that there is a relation between the variance 〈s2〉 and the covariance
〈su〉. This can be seen by multiplying (69) by s and then taking the average. We use the fact that for the
stationary time series s the mean and higher order moments are independent of time, i.e.

〈
s

ds

dt

〉
= 1

2

d

dt
〈s2〉 = 0. (70)
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In other words,

〈s2〉 = 〈su〉
�

. (71)

Rewriting (64) in the form

ṡ + s

τ◦
= u

�τ◦
+ 1

2

(
∂2G

∂S2
s2 + 2

∂2G

∂S∂U
su + ∂2G

∂U 2
u2

)
+ v2

2U�τ◦
, (72)

we can now determine the bias on the measured wind speed by taking the mean of (72). Since u is the
fluctuation around the mean U , 〈u〉 is zero by definition. The mean 〈s〉 is of course constant, so that
〈ṡ〉 = 0, but 〈s〉 is not zero, because S is only the mean of the rotation rate s̃ when there is no turbulence.
In fact, the dimensionless quantity 〈s〉/S is the relative bias on the measured wind speed. From (72) we
get

〈s〉
S

= τ◦
2S

{
∂2G

∂S2
〈s2〉 + 2

∂2G

∂S∂U
〈su〉 + ∂2G

∂U 2
〈u2〉

}
+ 〈v2〉

2U 2
. (73)

Just like we obtained (67), we derive a relation between the second derivatives by differentiating (63) twice
with respect to U . The result is

1

�2

∂2G

∂S2
+ 2

�

∂2G

∂S∂U
+ ∂2G

∂U 2
= 0. (74)

With this equation and (71), we reformulate (73):

〈s〉
S

= �τ◦
2U

∂2G

∂U 2
{〈u2〉 − �〈su〉} + 〈v2〉

2U 2
. (75)

We need to determine the coefficient �τ◦/(2U) × ∂2G/∂U 2. Fortunately, this has been done by Wyngaard
et al. (1974) and by Coppin (1982) in rather sophisticated wind-tunnel experiments. Their results are
summarized by Kristensen (1998) and for a number of widely different types of cup anemometers they
found that within about 10%

� Uτ◦
2

∂2G

∂U 2
= 1, (76)

independent of the mean-wind speed U . We will assume that this instrument constant, which was originally
called a4 by Wyngaard et al. (1974), is one and, consequently, that (75) becomes

〈s〉
S

= 1

U 2
{〈u2〉 − �〈su〉} + 〈v2〉

2U 2
. (77)
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To evaluate �〈su〉 we need to find out how s = s(t) depends on u = u(t). We find the relation by solving
(69). The solution is

s(t) = 1

�

∞∫
0

u(t − τ) e−τ/τ◦ dτ

τ◦
. (78)

This leads to

〈u2〉 − �〈su〉 = 〈u2〉 −
〈 ∞∫

0

u(t)u(t − τ) e−τ/τ◦ dτ

τ◦

〉

=
∞∫

0

〈u2 − u(t)u(t − τ)〉 e−τ/τ◦ dτ

τ◦

= 1

2

∞∫
0

〈
[u(t − τ) − u(t)]2〉 e−τ/τ◦ dτ

τ◦
. (79)

The quantity average 〈[u(t − τ) − u(t)]2〉 is the longitudinal structure function (42) which, for stationary
signals like u(t), depends on the time difference τ and is independent of the absolute time t (Lumley &
Panofsky 1964, page 46).

DL(r) =
〈[

u

(
x − r

U

)
− u

( x

U

)]2
〉

, x = Ut. (80)

Thus we may write (42) in the form

〈u2〉 − �〈su〉 = 1

2

∞∫
0

DL(r) e−r/�◦ dr

�◦
, (81)

where we have changed integration variable from τ to r and where we have used the relation (66) between
the length constant �◦ and the time constant τ◦. Inserting in (77) the bias δU due to the horizontal velocity
velocity fluctuations is therefore given by

δU

U
= 〈s〉

S
= 1

2U 2

∞∫
0

DL(r) e−r/�◦ dr

�◦
+ 〈v2〉

2U 2
. (82)

The result (82) would be the final result concerning the bias on the mean-wind speed if the cup anemometer
angular response were ideal in the sense that only the wind component perpendicular to the rotor axis exerts
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a forcing on the rotor. In this case we say that the anemometer has a cosine angular response. The angular
response g(θ) is usually not a cosine. In general we have

g(θ) = cos θ + μ1 sin θ + μ2(1 − cos θ), (83)

where μ1 and μ2 are dimensionless instrument constants. For small angles this becomes to second order
in θ

g(θ) � 1 + μ1θ − (1 − μ2)
θ2

2
, (84)

showing that μ1 characterizes the angular skewness or up/down asymmetry while μ2 defines the curvature.
If μ1 = μ2 = 0 the angular response is a cosine response. If μ1 = 0 and μ2 = 1 the angular response is
flat while μ2 < 0 means that g(θ) falls below the ideal cos θ .

This means that the forcing on the cup rotor is no longer determined by (61), but rather by

h̃′ =
√

h̃2 + w̃2g(θ). (85)

To second order in the perturbing quantities we get, in analogy to (61),

√
h̃2 + w̃2 =

√
(U + u)2 + v2 + w2 � U + u + v2 + w2

2U
, (86)

so that

cos θ = h̃√
h̃2 + w̃2

� 1 − w2

2U 2
(87)

and

sin θ = w̃√
h̃2 + w̃2

� w

U
− uw

U 2
. (88)

Inserting (87) and (88) into (83), the expression for the “apparent” horizontal velocity component becomes

h̃′ = U + (u + μ1w) + v2 + μ2w
2

2U
. (89)

In other words, h̃′ is given by h̃ if we make the replacements

u ⇒ u + μ1w

v2 ⇒ v2 + μ2w
2.

(90)

This implies that (79) is still valid with the replacement

16



〈[u(t − τ) − u(t)]2
〉 ⇒ 〈[{u(t − τ) + μ1w(t − τ)} − {u(t) + μ1w(t)}]2

〉
= 〈[u(t − τ) − u(t)]2〉︸ ︷︷ ︸

=DL(Uτ)

+μ2
1

〈[w(t − τ) − w(t)]2〉︸ ︷︷ ︸
=DT (Uτ)

+ 2μ1 〈[u(t − τ) − u(t)][w(t − τ) − w(t)]〉︸ ︷︷ ︸
=0

. (91)

Under each of the three terms we have given their values according to general rules (24)—(28) for isotropic
turbulence.

With the replacements (90) the complete bias expression becomes, as a generalization of (82),

δU

U
= 〈s〉

S
= 1

2U 2

∞∫
0

DL(r) e−r/�◦ dr

�◦
+ μ2

1

2U 2

∞∫
0

DT (r) e−r/�◦ dr

�◦
+ 〈v2〉 + μ2〈w2〉

2U 2
. (92)

To include the imperfect angular response we must also apply the replacement (90) to the first-order equa-
tion (69), which then becomes

ṡ + s

τ◦
= u + μ1w

�τ◦
. (93)

This equation describes a first-order, low-pass filtering of the signal u(t) + μ1w(t) with the time constant
τ◦ = �◦/U . We note that the parameter μ2 does only enter here if second-order perturbations are included.

5 Overspeeding in the Atmospheric Surface Layer

The cup-anemometer is usually operated at altitudes of 10 m or more and, consequently, the integral scale
of the turbulence will be larger than 50 m (Kristensen et al. 1989). Comparing this scale with the distance
constant �◦ which is seldom more than a few meters, we may safely assume that the the turbulence is close
to being locally isotropic. This means that we may apply (44) and (45) for DL(r) and DT (r) in (92).

The first two terms on the right-hand side of (85) become

1

2U 2

∞∫
0

DL(r) e−r/�◦ dr

�◦
= 6

√
3π

55
α

(ε�◦)2/3

U 2
(94)

and

μ2
1

2U 2

∞∫
0

DT (r) e−r/�◦ dr

�◦
= 8

√
3π

55
α μ2

1
(ε�◦)2/3

U 2
. (95)
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The resulting relative bias can now be written

δU

U
= 6

√
3π

55
α

(
1 + 4

3
μ2

1

)
(ε�◦)2/3

U 2
+ 〈v2〉 + μ2〈w2〉

2U 2
. (96)

When U>∼5 m/s the surface layer can be considered neutrally stratified and the vertical velocity gradient is
then given by

dU

dz
= u∗

κz
, (97)

where κ � 0.4 is the von Kármán constant and

u∗ = √−uw (98)

the friction velocity. The relation between u∗ and the dissipation is

ε = u3∗
κz

. (99)

Consequently, we may reformulate (96) as follows

δU

U
= 6

√
3π

55
α︸ ︷︷ ︸

�1.01

(
1 + 4

3
μ2

1

)
u2∗
U 2

(
�◦
κz

)2/3

+ 〈v2〉 + μ2〈w2〉
2U 2

. (100)

This equation can also be expressed in terms of the longitudinal variance 〈u2〉 instead of the friction velocity
u∗ squared. According to Panofsky & Dutton (1984) we have the empirical relation

〈u2〉1/2

u∗
� 2.39 ± 0.03 (101)

in flat terrain and with neutral stratification. We obtain the practical formulation

δU

U
� 0.325

(
1 + 4

3
μ2

1

) 〈u2〉
U 2

(
�◦
z

)2/3

+ 〈v2〉 + μ2〈w2〉
2U 2

. (102)

6 Overspeeding in a Wind Tunnel

The length scale Δ in a wind tunnel is small compared to that of the atmosphere and to quantify the bias
we assume that the turbulence is isotropic. The longitudinal spectrum (40) is displayed in Fig. 2 in the
usual “area conserving” form. In this case the three component variances are all the same, namely

σ 2 = 〈u2〉 = 〈v2〉 = 〈w2〉. (103)

18



We may now write (92 in the form

δU

U
= σ 2

U 2

[
ϕL(q�◦) + μ2

1ϕT (q�◦)
] + (1 + μ2)σ

2

2U 2
, (104)

where

ϕL(q�◦) = 1

2σ 2

∞∫
0

DL(r) e−r/�◦ dr

�◦

= 1 + B(2/3, 5/6)

2

(q�◦)2/3

(1 − (q�◦)2)5/6
− 2F1(1/2, 1; 2/3; (q�◦)2) (105)

and

ϕT (q�◦) = 1

2σ 2

∞∫
0

DT (r) e−r/�◦ dr

�◦

= 1 + B(2/3, 5/6)

2

(q�◦)2/3

(1 − (q�◦)2)5/6
− 2F1(1/2, 1; 2/3; (q�◦)2)

+ 2−12(q�◦)2 + [2+3(q�◦)2][B(1/2, 2/3)(q�◦)22/3(1 − (q�◦)2)1/6 − 2F1(−1/2, 1; 2/3; (q�◦)2)]
18(1 − (q�◦)2)

. (106)

These two functions can be determined in terms of the hypergeometric function (Oberhettinger 1964) with
the expressions (53) and (54). They are presented in Fig. 5.

7 Summary

A good cup anemometer is an attractive instrument for practical purposed, mainly because it is omnidi-
rectional and easy to deploy in the atmospheric boundary layer. It can safely be assumed to have a linear
calibration, often presented as

U = A◦ + B◦ × f, (107)

where A◦ and B◦ are independent of the wind speed. The first is called the “starting threshold”. The
quantity f is the frequency in Hz which is proportional to the rotation rate of the rotor S in rad/s. Since
this frequency, in turn, is proportional to the number of pulses n created per one full revolution,we have

f = n × S

2π
.
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Figure 5: The functions ϕL(q�◦) and ϕT (q�◦), based on the von Kármán spectrum. For values of q�◦ up to
about 0.1 we are in the domain of local isotropy, where both functions are proportional to (q�◦)2/3.

In the preceding considerations the linearity is presented by (58):

S = U − U◦
�

,

where S is the cup rotation-rate in rad/s and U◦ is the “starting speed” and � the “calibration length”.
Obviously, U◦ = A◦, and the relation between � and B◦ becomes

� = n × B◦
2π

in terms of the number n of pulses being created in one revolution of the cup rotor. The calibration length
� can be interpreted as the length of the column air which has for blow through the anemometer for the
rotor to complete one full rotation i.e. 360◦.

The cup anemometer is always mounted with vertical axis and since we assume that the mean wind direc-
tion is perpendicular to the axis. However, the fluctuation wind velocity components (with the mean-wind
vector removed) can have any direction. Figure 4 shows the instantaneous velocity components (̃u, ṽ, w̃)

and the total horizontal velocity component h̃ = √
ũ2 + ṽ2 in relation to the cup-anemometer rotor. As the

right-hand frame shows the magnitude of the wind vector is
√

h̃2 + w̃2 and if the response were ideal, the
anemometer would respond to

√
h̃2 + w̃2 cos θ , where tan θ = w̃/̃h. In other words, the vertical velocity

will then not influence the angular speed of the rotor. However, cup anemometers are not ideal so in gen-
eral they will respond to the more general form,

√
h̃2 + w̃2g(θ). The function g(θ) is the so-called angular

response. We find that for small angles we can use the equation

g(θ) = 1 + μ1θ − (1 − μ2)
θ2

2
.
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This expression has two parameter μ1, which account for the up-down asymmetry, and μ2, which describes
the curvature. We see that if μ1 the response is symmetric. In this case μ2 = 0 means that the angular
becomes ideal, while μ2 = 0 implies that the angular response is flat.

The dynamics of the cup anemometer can be described as a first-order filter in the fluctuating velocity
components and the fluctuating angular velocity s of the cup rotor:

ṡ + s

τ◦
= u + μ1w

�τ◦
.

If, at a given wind speed with constant rotation rate, a sudden increase in the wind speed will cause the
rotor to increase the rotation rate until the new equilibrium is obtained. For a first order filter τ◦ is the time
it takes to obtain 63 percent of the new equilibrium. The distance constant is defined by

�◦ = Uτ◦

This is a true instrument constant and can be interpreted as the length of the column of air which must pass
through the rotor to obtain 63 percent of the final equilibrium rotation rate.

So a cup anemometer is characterized by five constants: 1) One velocity U◦, the starting threshold. 2) Two
lengths, the calibration length � and the distance constant �◦. 3) Two dimensionless constants, μ1 and μ2

describing the angular response.

We have the tools to determine the overspeeding. For the neutral atmospheric surface layer we have

δU

U
� 0.325

(
1 + 4

3
μ2

1

) 〈u2〉
U 2

(
�◦
z

)2/3

+ 〈v2〉 + μ2〈w2〉
2U 2

expressed in terms of the mean-wind speed U , the three velocity variances (〈u2〉, 〈v2〉, 〈w2〉), and the
measuring height z.

In the wind tunnel the bias will depend on the linear dimension of the tunnel and the distance constant.
Inspection of (104) and Fig. 5 seem to indicate that the relative overspeeding i about the squared turbulence
intensity.
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von Kármán, T. (1948), ‘Progress in the statistical theory of turbulence’, Proc. Nat. Acad. Sci. 34, 530–539.

Wyngaard, J. C. (1981), ‘Cup, propeller, vane, and sonic anemometers in turbulence research’, Ann. Rev.
Fluid Mech. 13, 399–423.

Wyngaard, J. C., Bauman, J. T. & Lynch, R. A. (1974), Cup anemometer dynamics, in ‘Proc. Flow, Its
Measurements and Control in Science and Industry’, Vol. 1, Instrument Society of America, Pittsburg,
PA, pp. 701–708.

22


