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Abstract Nonlinear sensor dynamics is discussed in terms of differential equa-
tions in time with the input signal and the response as dependent variables. The
cup anemometer response to the turbulent wind is analyzed in detail. Applying
second-order perturbation theory, the so-called overspeeding, which is a bias in
the measured mean wind speed due to fluctuations in the longitudinal wind com-
ponent, is evaluated in terms of a phenomenological model of the wind forcing of
the cup rotor. It is shown how the fluctuation in the other wind components give
rise to three other types of bias and it is concluded that the positive bias in the
mean wind speed due to wind-direction fluctuations is always largest and much
larger than the overspeeding and can be as much as 18% whereas the overspeed-
ing only in extreme cases exceeds about 2%. The differential equation describing
the cup-anemometer dynamics is of only first order. However, the technique of
evaluating the bias on the mean is generalized to apply to sensors with nonlinear
dynamics and obeying second-order differential equations. It is then demonstrated
how the bias in the mean due to random fluctuations can be determined for three
other sensor, namely the Pitot tube, the thrust anemometer and the CSIRO liquid
water probe. The last instrument will always have a negative bias. Returning to
the discussion of the cup anemometer, it is shown how this instrument can be used
together with a wind vane to reduce the bias due to wind direction fluctuations.
Finally it is discussed how a precise definition of a gust can be implemented and
how gusts can be determined by means of a cup anemometer.
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1 Introduction

What makes cup anemometers interesting? Anybody understands intuitively why
they are turning and that their rotation rate increases with increasing wind speed.
So what is it?

The cup anemometer is a standard instrument, widely used for routine observa-
tions as well as for experimental field measurements. Judging from the literature
since the 1920’s (Kaganov and Yaglom, 1976, Wyngaard, 1981, Coppin, 1982),
there has been a considerable interest in understanding the dynamics of the cup
anemometer, in particular when it is exposed to a turbulent wind. It has been of
great concern that the cup anemometer ‘overspeeds’, i.e. it responds more quickly
to an increase in the wind than to a decrease of the same magnitude and thus
tends ‘to spend more time on the high side than on the low side of the mean’
with the consequence that the measured mean wind speed will be too high. This
is of particular importance in the determination of wind stress by measuring wind
profiles. The overspeeding is probably the main reason that there has been such
an interest in modelling the motion of cup anemometers.

A satisfactory solution to the overspeeding problem was obtained by Wyngaard et
al. (1974), Kaganov and Yaglom (1976) and Busch and Kristensen (1976). Wyn-
gaard et al. (1974) considered a general, phenomenological model of the torque on
the cup rotor. They wrote the torque as a second-order expansion in the wind-and
response perturbations. They were then able to determine the expansion coeffi-
cients by measuring the torque directly in a wind tunnel where they forced the cup
anemometer to rotate with a speed which was not in equilibrium with the wind
speed. Kaganov and Yaglom (1976) and Busch and Kristensen (1976) indepen-
dently used this general theory to give an explicit expression for the overspeeding
and quantify the corresponding bias in the mean in terms of the turbulence in-
tensity and the cup anemometer distance constant. Their results showed how the
quadratic (nonlinear) terms in the forcing were responsible for the overspeeding.

This raises the question whether other instruments have nonlinear forcing and
whether this leads to systematic errors in the measured mean values if the in-
put is random and turbulent. In Kristensen and Lenschow (1988) we addressed
this question and derived a general theory for first-order systems, of which the
cup anemometer may serve as a prototype, and for second-order systems such as
thrust anemometers. We applied the theory to a Pitot tube, a thrust anemometer
described by Smith (1980) and to the CSIRO liquid water probe (King, 1978).

The theme in the following will be the interpretation of signals from instruments
with nonlinear forcing, exposed to a random, turbulent input. Although there is
a vast amount of literature about the cup anemometer, this is not a review, but
a general introduction to the phenomenological theory of instrument response. It
would be possible to trace the history of the cup anemometer by starting with the
review by Wyngaard (1981), supplemented by the text book by Middleton and
Spilhaus (1953).

First we will deal with the cup anemometer in great detail; we will discuss first-
and second-order perturbation equations of motion and the different types of over-
speeding. A simple model for the forcing with five parameters will be evaluated,
discussed and used to explain the dynamic properties of the cup anemometer.
Then we will give an account of the theory of nonlinear forcing of first- and second-
order systems by Kristensen and Lenschow (1988) and discuss its application to
the Pitot tube, the thrust anemometer and the CSIRO liquid water probe. Since
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the operation of this last instrument is based on a special application of a constant-
temperature hot-wire anemometer, it would seem natural to include an analysis of
this anemometer which, according to Freymuth (1977), has a nonlinear response
to the fluctuating wind. Interesting as such an analysis certainly would be, I have
decided that it is beyond the scope of this presentation to include a discussion of
the hot-wire anemometer with all the details the subject would deserve.

Finally we return to the cup anemometer and show how to use it in conjunction
with a wind vane in such a way as to reduce the bias in the measured mean
wind velocity due to wind-direction fluctuations and at the same time obtain the
mean and the variance of the wind direction. Then we demonstrate how the cup
anemometer can be applied in gust measurements. The emphasis in this second
application is more on definition and a practical way of predicting gusts.

I hope that the analysis given here will show the need to understand the inter-
action between instruments and the medium providing the input. Without such
understanding, one cannot hope to obtain a correct interpretation of the output.
At the same time it is my aspiration to illustrate the exciting response properties
of seemingly dull instruments by developing the necessary mathematical tools.

2 The Cup Anemometer

As a field instrument and general-purpose anemometer for operational purposes
the cup anemometer has three good properties.

Firstly, it is omnidirectional; when mounting the instrument, it is only necessary
to make sure that the axis is pointing in the vertical direction.

Secondly, a good cup anemometer with a linear calibration filters the wind speed
in space, along the wind direction, and not in time. This is a very useful property
in turbulence measurements since turbulent fluctuations to a very high degree of
accuracy (to that of Taylor’s hypothesis) can be considered spatial rather than
temporal phenomena. As we will see, the filter is of the simplest first-order type
with a distance constant which is independent of the wind speed.

Finally, the cup anemometer is robust and easy to operate.

We assume that the cup anemometer is mounted with its axis vertical. In this case
the equation for the rotation rate of the rotor can be written

˙̃s = F (s̃,
√
ũ2 + ṽ2, w̃), (1)

where ũ, ṽ and w̃ are the instantaneous horizontal and vertical wind components
and s̃ is the instantaneous rotation rate of the anemometer rotor in rad s−1. The
angular momentum of the rotor is proportional to s̃ and (1) just states that the
rate of change∗ of the angular momentum is equal to the torque on the rotor. This
torque is caused by the wind and the friction in the instrument bearings. For a
real cup anemometer the right-hand side, the torque divided by the moment of
inertia, is a function of s̃, the total horizontal wind component

√
ũ2 + ṽ2 as well

as the vertical wind component w̃.
∗A dot over a variable signifies differentiation with respect to time. This convention is not

used consistently. At certain places I use d/dt for clarity.
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2.1 Calibration

When the anemometer is exposed to a horizontal wind speed which at a given time
changes from one value to another there will be a non-zero torque on the rotor
and ˙̃s will be different from zero until s̃ has obtained such a magnitude that the
torque is again zero. This steady-state situation is usually established in less than
1 s. The rotation rate will stay constant as long as the wind speed is constant.
It is an increasing function of the wind speed and therefore s̃ is a measure of the
wind speed.

The cup anemometer is usually calibrated in a wind tunnel which is operated with
wind speeds in the range of interest.

In the steady state, with a constant horizontal wind speed U and a constant
rotation rate S, (1) reduces to

F (S,U, 0) = 0. (2)

Solving (2) for S we obtain the calibration equation

S = S(U). (3)

It is a well-known experience that the cup anemometer has a steady-state calibra- Linear calibration
tion curve which, for most purposes can be considered linear, i.e. d2S/dU2 = 0.
This means that we can write (3) as

S =
U − U0

�
. (4)

Here U0 is a positive offset speed. It is no more than about 0.1 m s−1 for a good cup Offset speed
anemometer. Often it is called the starting speed, but that is really a misnomer;
when the wind speed is very small—less than 1 m s−1, say—the contribution to the
total torque from the friction in the bearings becomes significant and the steady-
state calibration expression is no longer close to being linear. Also, experience
shows that the real starting speed is in general larger than U0 (Busch et al.,
1980). This means that the cup anemometer is unsuited to operate in very light
winds. If the wind speed is just a few meters per second U0 can be neglected in
most applications.

The quantity � is a length scale which, when U0 � U , can be visualized as the Calibration distance
length of the column of air which has blown through the anemometer when the
rotor has turned one radian. We shall call it the calibration distance.

Most cup anemometers are designed such that they have linear calibrations for
wind speeds exceeding a few meters per second. Middleton and Spilhaus (1953)
cite Brazier (1914) for having discovered that to minimize the second-and higher-
order terms in the calibration, the ratio of the cup diameter to the diameter of
the circle described by the cup centers must be 0.5. The discovery that shorter
cup arms improve the linearity of the calibration is supported by the findings of
Patterson (1926). The linearity of the calibration is of importance if we want to
use the cup anemometer as described in section 4.

2.2 First-Order Perturbation

In operation the cup anemometer will be exposed to a wind velocity which fluc-
tuates in magnitude and direction. We assume that the mean wind velocity is
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horizontal and that the fluctuations are small compared to the mean wind speed
U . We decompose the instantaneous wind velocity as




ũ

ṽ

w̃




=




U + u

v

w



, (5)

letting the direction of the mean wind define the x axis.

Denoting averaging by 〈 〉, we see that (5) implies

〈u〉 = 〈v〉 = 〈w〉 = 0. (6)

Correspondingly, we write the instantaneous rate of rotation as

s̃ = S + s, (7)

where S is the steady-state calibration given in (3).

The way in which s̃ is decomposed does not guarantee that 〈s〉 is zero; in fact,
〈s〉 �= 0 is a manifestation of the so-called overspeeding as we shall see later.

First, however, we will derive a first-order perturbation equation for the rotation
rate in u, v, w and s. The overspeeding is caused by the nonlinearity of the function
F and can therefore not be determined from this first-order analysis.

Substituting (5) and (7) in (1) and expanding to first order we get

ṡ =
∂F

∂S
s+

∂F

∂U
u+

∂F

∂W
w, (8)

where the derivatives are taken at the point (S(U), U, 0). We note that there are
no terms proportional to v; since

√
ũ2 + ṽ2 =

√
(U + u)2 + v2

= U

√
1 + 2

u

U
+
u2

U2
+
v2

U2

= U

{
1 +

1
2

(
2
u

U
+
u2

U2
+
v2

U2

)

− 1
8

(
2
u

U

)2

+ higher-order terms
}

≈ U + u+
v2

2U
, (9)

the first term containing v in the expansion of
√
ũ2 + ṽ2 is proportional to v2.

Equation (8) tells us that the angular acceleration of the rotor, ṡ, is proportional
to the instantaneous longitudinal and vertical velocity deviations u and w from
the mean and to the deviation of the angular velocity s from S, given by (3).
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In order to understand (8), let us first consider a situation in which w = 0, so that
there is only a horizontal velocity perturbation. Let this be positive—a little step
change in speed from U to U+u. We know from experience that this will make the
rotor turn faster, i.e. ṡ > 0, and eventually settle at a rotation rate corresponding
to the new speed U + u. The implication is that ∂F/∂U must be positive. But
then ∂F/∂S, the coefficient in front of s, must be negative. Otherwise the rotation
rate will keep growing.

We can see this in another, more formal way, by differentiating (2) with respect First-order constraint
to U , keeping in mind that S is a function of U . The result of this operation is
the following constraint

∂F

∂S

dS

dU
+
∂F

∂U
= 0. (10)

Here dS/dU and ∂F/∂U are both positive. Consequently, ∂F/∂S must be nega-
tive.

A glance at (8) shows that ∂F/∂S has the physical dimension of a reciprocal time.
We therefore define the time scale

τ0 = −
(
∂F

∂S

)−1

. (11)

This time scale will in general be a function of U .

With the help of (10) and (4) we can express ∂F/∂U in terms of τ0 and the
calibration distance �:

∂F

∂U
=

1
τ0

dS

dU
=

1
τ0�

. (12)

The first-order perturbation equation (8) can then be reformulated as

ṡ+
s

τ0
=

1
�

u

τ0
+
∂F

∂W
w. (13)

The right-hand side contains the external forcing, consisting of terms in which
the input variables u and w are multiplied by the respective sensitivities of the
instrument. The left-hand side is the reaction of the cup anemometer.

Let us consider a situation with a horizontal input u(t) only. Then the first-order
perturbation equation for the rotor motion reads

ṡ+
s

τ0
=

1
�

u

τ0
. (14)

This is the linear response equation of a first-order system with one input u(t). It Response to step input
can be studied in a number of ways. One simple and illuminating diagnostic tool
is a study of its response to a step function given by

u =




0 for t < 0

∆U for t ≥ 0

. (15)

In this case, the response will be

s(t) =
∆U
�

(1 − e−t/τ0) (16)
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—the classical response of a first-order system to a step function. Figure 1 shows
how the response adjusts to the new equilibrium value of the input. It grows such
that when t = τ0 it has attained 63% of its terminal value s(∞). The time scale
τ0 is a measure of the time the system needs to respond to a sudden change in the
input.

0

0.5

1

0 1 2 3

�s
∆U

t/τ0

Figure 1. The first-order response (16) of a cup anemometer to a step input ∆U .

Let us return to the more general equation (13). We saw that the coefficient of u
was determined by (4), (10) and (11). How can we relate the coefficient ∂F/∂W
to observed cup-anemometer characteristics? The answer is that this quantity is
connected with the first-order angular response of the cup anemometer. First,
however, we must specify what we understand by the term angular response.

We define it in terms of a constant wind velocity U which forms an angle ϑ with Angular response,
definitionthe rotor plane. Such a situation can be obtained in a wind tunnel, operated at

constant speed U , by tilting the anemometer the angle ϑ from vertical. When the
anemometer is tilted towards the flow, this corresponds to a downward or negative
velocity component as seen from the anemometer; in that case we consider ϑ
negative. Conversely, tilting the anemometer away from the flow gives a positive
angle of attack ϑ. Figure 2 illustrates how the cup anemometer is mounted in the
wind tunnel in the case when a positive vertical wind component is simulated.

The total speed is U = |U| and we denote the component perpendicular to the
rotor plane wϑ. The component in the rotor plane is the sum of U and the pertur-
bation uϑ, which of course is zero when wϑ is zero. With these definitions, simple
geometrical considerations lead to

(U + uϑ)2 + w2
ϑ = U2. (17)

and, solving (17) for uϑ, we get

uϑ = −
(
U −

√
U2 − w2

ϑ

)
. (18)

10 Risø–R–615(EN)



Figure 2. A cup anemometer mounted in a wind tunnel for angular response de-
termination.

The angle of attack becomes

ϑ = arcsin
(wϑ

U

)
. (19)

The steady-state response of the cup anemometer S is in this situation a function
of ϑ and U and we define the angular response as g(ϑ, U) as

g(ϑ, U) =
S(ϑ, U)
S(0, U)

. (20)

Busch et al. (1980) show the angular response of the Risø-70 model. The data were
obtained in a wind tunnel with wind speeds U in the interval from 7 to 18 m s−1.
The curve they show represents an average from which the individual curves do
not deviate more than 0.001 in the interval from −45◦ to +45◦. On basis of this
result we assume that the angular response of a cup anemometer in general can
be assumed independent of the wind speed.

We are in general interested only in the case |wϑ| � U and then (18) and (19)
become

uϑ ≈ −w
2
ϑ

2U
(21)

and

ϑ ≈ wϑ

U
. (22)

Equation (21) shows that the constant perturbation wϑ of the vertical velocity
component implies a perturbation in horizontal velocity component of second order
in wϑ.

Denoting the anemometer perturbation response sϑ and applying (13) to this First-order angular
response

Risø–R–615(EN) 11



situation, we get

sϑ = τ0
∂F

∂W
wϑ, (23)

since ṡϑ = 0 for a constant input. The uϑ-term is of order w2
ϑ and must conse-

quently be left out in first-order considerations.

Applying (4) to the horizontal wind component U + uϑ ≈ U and assuming that
U0 can be neglected, we recast (23) in the form

sϑ

S
= �τ0

∂F

∂W

wϑ

U
= �τ0

∂F

∂W
ϑ. (24)

The angular response to the first order in ϑ thus becomes

g(ϑ) =
S + sϑ

S
= 1 + �τ0

∂F

∂W
ϑ. (25)

The function g(ϑ) is assumed independent of U , and the coefficient

µ1 = �τ0
∂F

∂W
(26)

in front of ϑ is therefore also independent of U . As shown here, the value of µ1

can be determined in a wind tunnel.

Going back to (20), we see that the linear calibration (4) with U0 = 0 implies that

S(ϑ, U) =
U

�
g(ϑ). (27)

Ideally, we would like the cup anemometer to be sensitive only to the wind com-
ponent in the rotor plane. This requires that g(ϑ) = cos(ϑ). For small angles we
have to second order in ϑ

cos(ϑ) ≈ 1 − ϑ2

2
.

In other words, for a good cup anemometer, the angular response should not
contain a term proportional to ϑ. This is the case in (25) if µ1 is not zero. In
the next subsection, where we discuss second-order perturbations, we return to a
more complete description of the angular response and at that occasion we will
include all terms of second order in wϑ.

After having introduced the constant µ1, we rewrite the first-order perturbation
equation (13) as

ṡ+
s

τ0
=

1
�

{
u

τ0
+ µ1

w

τ0

}
. (28)

With the initial condition s(−∞) = 0, the solution to this equation is First-order solution

s(t) =
1
�

∫ ∞

0

{u(t− τ) + µ1w(t− τ)} exp(−τ/τ0)
dτ

τ0
. (29)

This result will be an important ingredient when we are going to discuss second-
order perturbations and overspeeding.
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Before we leave the subject of first-order perturbations, we will briefly return to Two first-order
constraintsfirst-order constraints, but in a little more general way.

We imagine a steady-state condition in which W can be different from zero. Then

F (S(U,W ), U,W ) = 0. (30)

In other words, the rotation rate S must be considered a function of both U and
W .

We are dealing with this function in the neighborhood of the point (S(U,W ), U,W ) =
(S(U, 0), U, 0) and therefore S is the same linear function of U as that given by
(4), i.e.

∂S

∂U
=

1
�
. (31)

Taking the partial derivative of (30) with respect to U we get

∂F

∂S

1
�

+
∂F

∂U
= 0. (32)

This equation is equivalent to (10).

Taking the derivative of (30) with respect to W yields

∂F

∂S

∂S

∂W
+
∂F

∂W
= 0. (33)

Applying (11) and (26) to (33), we see that ∂S/∂W given by

∂S

∂W
=
µ1

�
. (34)

Since µ1 and � by assumption are independent of U in the neighborhood of
(S(U,W ), U,W ) = (S(U, 0), U, 0), the derivatives of (31) and (34) with respect
to U are zero in the point (S(U, 0), U, 0), i.e.

∂2S

∂U2 =
∂2S

∂U∂W
= 0. (35)

However, there are no a priori reason that the second derivative of S with respect
to W is zero in this point.

The constraints (32) and (33) will, together with (29), be important for the eval-
uation of overspeeding.

2.3 Second-Order Perturbation

We now turn to the second-order expansion of (1) in the neighborhood of the
equilibrium point (S(U), U, 0).

We have to be careful with the second argument of the forcing function because
it contains the lateral component v to the second power; however, there is no
second-order term in u as (9) shows.

Expanding F (s̃,
√
ũ2 + ṽ2, w̃) in the neighborhood of (S(U), U, 0) and collecting

terms of the same order, we get

Risø–R–615(EN) 13



ṡ+
s

τ0
=

1
�τ0

u+
µ1

�τ0
w +

1
�τ0

v2

2U

+
1
2

{
∂2F

∂U2u
2 + 2

∂2F

∂U∂W
uw +

∂2F

∂W 2w
2

}

+
1
2

{
∂2F

∂S2 s
2 + 2

∂2F

∂S∂U
su+ 2

∂2F

∂W∂S
ws

}
. (36)

This is a very ‘nasty’, nonlinear differential equation if we were going to find an
exact solution as we did with the first-order perturbation equation (28). In the
next section we will see that it is not necessary to find the solution to (36) in order
to obtain expressions for the overspeeding.

However, before we turn to this subject we will derive three more constraints be- Three second-order
constraintstween the second derivatives of F (S(U,W ), U,W ) in the point (S(U,W ), U,W ) =

(S(U, 0), U, 0).

Taking the derivatives of (32) and (33) with respect to U and W at this point, we
obtain, after using (34) to replace ∂S/∂W ,

∂2F

∂S2

1
�2

+ 2
∂2F

∂S∂U

1
�

+
∂2F

∂U2 = 0, (37)

∂2F

∂S2

µ1

�2
+

∂2F

∂S∂U

µ1

�
+

∂2F

∂W∂S

1
�

+
∂2F

∂U∂W
= 0 (38)

and

∂2S

∂W 2

∂F

∂S
+
∂2F

∂S2

µ2
1

�2
+ 2

∂2F

∂W∂S

µ1

�
+
∂2F

∂W 2 = 0. (39)

We note that (39) has a term proportional to the second derivative ∂2S/∂W 2. As
was the case with the first derivative, it is possible to obtain information about
∂2S/∂W 2 by determining the the angular response to the second order in wϑ.

Proceeding as in last subsection and, once again, applying (21), we get from (36) Second-order angular
response

sϑ

τ0
= − w2

ϑ

2�Uτ0
+ µ1

wϑ

�τ0

+
1
2

{
∂2F

∂U2

(
−w

2
ϑ

2U

)2

+ 2
∂2F

∂U∂W

(
−w

3
ϑ

2U

)
+
∂2F

∂W 2w
2
ϑ

}

+
1
2

{
∂2F

∂S2 s
2
ϑ + 2

∂2F

∂S∂U
sϑ

(
−w

2
ϑ

2U

)
+ 2

∂2F

∂W∂S
wϑsϑ

}
. (40)

Noting from this equation that sϑ is of the order wϑ to at least the first power
and, retaining terms of no higher than second order in wϑ, we rewrite (40) as

1
2
∂2F

∂S2 s
2
ϑ−

1
τ0

{
1 − τ0

∂2F

∂W∂S
wϑ

}
sϑ+µ1

wϑ

�τ0
+

1
2τ0

{
∂2F

∂W 2 − 1
�U

}
w2

ϑ = 0.(41)

14 Risø–R–615(EN)



This is a quadratic equation in sϑ. Substitution of µ1wϑ/� for sϑ in the first term
of (41) yields the solution †

sϑ = µ1
wϑ

�
+
τ0
2

{
∂2F

∂S2

µ2
1

�2
+ 2

∂2F

∂W∂S

µ1

�
+
∂2F

∂W 2 − 1
�Uτ0

}
w2

ϑ. (42)

Comparing the coefficient of w2
ϑ with (39), we see that (42) can also be written

sϑ = µ1
wϑ

�
+

1
2

{
∂2S

∂W 2 − 1
�U

}
w2

ϑ, (43)

where we have used (11) to replace ∂F/∂S with −1/τ0.

Ignoring the offset speed, i.e. using the approximation U ≈ �S, the angular re-
sponse now becomes

g(ϑ) ≈ g
(w
U

)
= 1 +

sϑ

S

≈ 1 + µ1
wϑ

U
+

1
2

{
�U

∂2S

∂W 2 − 1
}
w2

ϑ

U2

= 1 − w2
ϑ

2U2
+ µ1

wϑ

U
+

1
2
µ2
w2

ϑ

U2

≈ cos(ϑ) + µ1ϑ+
1
2
µ2ϑ

2, (44)

where we have defined the quantity µ2 by

µ2 = �U
∂2S

∂W 2 . (45)

Again, based on measurements (Busch et al., 1980), we assume that the angular
response is independent of the wind speed U . Consequently, µ2 must also be
independent of U .

We see from (44) that the cup anemometer has a cosine angular response only
when both µ1 and µ2 are zero.

The constraint (39) can now be reformulated in terms of the new constant µ2 as

∂2F

∂S2

µ2
1

�2
+ 2

∂2F

∂W∂S

µ1

�
+
∂2F

∂W 2 =
µ2

�Uτ0
. (46)

Wyngaard et al. (1974) were the first to formulate a general equation of motion Wind tunnel
measurementsin terms of the first and second derivatives of F (S,U,W ) for (S(U,W ), U,W ) =

(S(U, 0), U, 0) and to determine these quantities in a wind tunnel for one particular
cup anemometer‡. Leaving out the lateral velocity fluctuations, they reformulated
(36) in terms of s′ = s/S, u′ = u/U and w′ = w/U in the following way

†A quadratic equation has of course two solutions. The other solution contains a term of
order w0

ϑ, i.e. a constant, and is therefore not realistic since sϑ must be zero when wϑ is zero.
‡Wyngaard (1991, private communication) believes, without being completely certain, that

the cup assembly is identical to that used in the Kansas Windy Acres 1968 field experiment
(Haugen et al., 1971 and Businger et al., 1971).
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s′ + τ0ṡ
′ = a1u

′ + a2w
′

+ a3s
′2 + a4u

′2 + a5w
′2

+ a6u
′s′ + a7u

′w′ + a8s
′w′. (47)

Comparing with (36) we can state their results in both their and our notation as
follows




a1

a2

a3

a4

a5

a6

a7

a8




≡




1

µ1

1
2
∂2F
∂S2

Uτ0
�

1
2
∂2F
∂U2 �Uτ0

1
2
∂2F
∂W 2 �Uτ0

∂2F

∂S∂U
Uτ0

∂2F

∂U∂W
�Uτ0

∂2F

∂W∂S
Uτ0




=




1.03 < ±10%

0.06 ±0.1

−0.23 < ±10%

0.96 < ±10%

0.67 ±0.1

−0.73 < ±10%

0.04 ±0.1

−0.12 ±0.1




. (48)

Here we have again assumed that U = �S and in that case the condition

a1 = 1 (49)

must be fulfilled.

Further, the constraints (37) and (38) imply

a3 + a4 + a6 = 0 (50)

and

2a2(a3 + a6) + a7 + a8 = 0. (51)

The three tests (49), (50) and (51) are fulfilled well within the experimental un-
certainty.

We can use the measurements by Wyngaard et al. (1974) and the constraint (46)
to determine the constant µ2 for their anemometer. The result is

µ2 = 2(a2
2a3 + a2a8 + a5) ≈ 2a5 = 1.3. (52)

Coppin (1982) determined a1, a3, a4, a5 and a6 for a number of different cup
anemometers. He also found that (50) was satisfied within the accuracy of the
measurements and that a5 ranged from 0.47 to 0.90. Unfortunately, Coppin (1982)
does not present results concerning a2, a7 or a8. It seems that he assumes, on basis

16 Risø–R–615(EN)



of arguments and measurements by Wyngaard et al. (1974), that these three quan-
tities safely can be set equal to zero. We can therefore not check if his data fulfil
(51). However, assuming that a2 is in fact zero, or at least very small compared
to one, we conclude from (52) that

∂2F

∂W 2 =
2a5

�Uτ0
≈ µ2

�Uτ0
. (53)

This equation implies, together with (26), that we can determine the torque as a
function of the vertical velocity component, by measuring the angular response
and determining the two parameters µ1 and µ2. Later, we will show how it is
possible to use a simple model for the response to the horizontal wind to express
the torque as a function of this wind component in terms of � and two more
instrument parameters.

2.4 Overspeeding

With the second-order perturbation equation (36) we are also equipped to study
and discuss overspeeding. But first we will try to understand why a cup anemome-
ter must be expected to give a positive bias to the mean in a turbulent wind. We
follow the line of arguments by Wyngaard (1981).

The wind force on one cup depends not only on the magnitude of the wind speed
relative to the cup. It also depends on the angle of attack. For the same relative
wind speed, the force is larger when the wind blows into the cup than when
it blows on its outside. Intuitively, this seems obvious, but it is also confirmed
experimentally by Patterson (1926), who measured the force as a function of the
angle of attack. In both cases the force is in the direction of the relative wind
speed and is proportional to its square.

In a constant wind with speed U , the cup speed Uc will also be constant. The cup
speed will be smaller that U . Otherwise the relative wind will blow on the same
side of the cup, no matter where it is in its motion around the rotor axis; there will
then be a net torque, forcing the rotor to slow down until the condition Uc < U

is fulfilled. When the cup moves in the direction of the wind, the average force
on the cup will roughly be K+(U − Uc)2, where K+ is a positive constant. When
it moves against the wind the force will be K−(U + Uc)2, where K− is another
positive constant.

The total average torque F on the rotor, made up by the contributions from each
cup, must be zero when U and Uc are constant, viz.

F = rA(Nc){K+(U − Uc)2 −K−(U + Uc)2} = 0. (54)

In (54) r is the radius of the rotor, Nc the number of cups and A(Nc) an unknown
(positive) function which of course would be equal to Nc if the cups were not in
each others wake most of the time. In these semiquantitative arguments we neglect
the effect of the friction in the bearings.

Equation (54) implies that K+ > K−.

If there is a sudden change in the wind speed from U to U + u, the torque will
initially be

F = rA(Nc){K+(U + u− Uc)2 −K−(U + u+ Uc)2}
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= rA(Nc){[K+ −K−]u2 + 2[K+(U − Uc) −K−(U + Uc)]u}, (55)

where we have used (54). The coefficient of u2 is positive. The coefficient of u must
also be positive when U and Uc are different from zero since (54) implies, not only
that K+ > K−, but also that

√
K+(U − Uc) =

√
K−(U + Uc). (56)

If the left-hand side of (56) is multiplied by
√
K+ and the right-hand side by√

K−, we obtain the inequality

K+(U − Uc) > K−(U + Uc), (57)

which shows that the coefficient of u is positive. A sudden increase u of the wind
speed will then give a torque which is numerically larger than a sudden decrease
−u of the same magnitude. Since the rotation rate is not in equilibrium with the
turbulent wind, which constantly has many small and fast changes up and down,
the rotor will on average tend to run too fast with respect to the mean wind and
thus give a positive bias.

Kaganov and Yaglom (1976) and Busch and Kristensen (1976) independently an-
alyzed this phenomenon quantitatively and arrived at the same result, the last
authors with arguments which we will present here in a somewhat different and
expanded form.

Turning now to this more rigorous analysis, we consider a situation where the wind
velocity is horizontal in the mean and stationary so that 〈u〉 = 〈v〉 = 〈w〉 = 0.
Taking the average of (36) and normalizing by S = S(U), we obtain

〈s〉
S

=
〈v2〉
2U2

+
�τ0
2U

{
∂2F

∂U2 〈u
2〉 + 2

∂2F

∂U∂W
〈uw〉 +

∂2F

∂W 2 〈w
2〉
}

+
�τ0
2U

{
∂2F

∂S2 〈s
2〉 + 2

∂2F

∂S∂U
〈su〉 + 2

∂2F

∂W∂S
〈ws〉

}
. (58)

where we have used the linear calibration (4) and neglected the offset U0
§.

The right-hand side of this equation is in general not zero, but will be dependent
on the turbulent properties of the atmosphere in the measuring period. Since the
cup anemometer is calibrated in a constant, laminar wind field in a wind tunnel,
this means that 〈s〉 will be interpreted as an addition to the measured mean wind
speed if we use the calibration expression (3) or (4).

According to (58) the relative bias 〈s〉/S gets contributions from the three different Four bias types
velocity components. There are terms proportional to the variances 〈u2〉, 〈v2〉 and
〈w2〉 and one term proportional to the covariance 〈uw〉, the so-called stress. The
last line of (58) shows terms where the response s enters, either as its variance
or as its covariances with u and w. These last three terms make the study of

§I could easily take the offset into account, but the clarity of the presentation of overspeeding
would suffer without any significant information being added. It is probably advisable to include
the offset in an actual instrument investigation if the wind speed is low.
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overspeeding very interesting. They will be determined by means of the first-order
solution (29) and shown to get all their contributions from low-frequency variances
and covariance of u and w. The total bias can therefore be partitioned according
to origin—whether it is the variance of u, v or w, or the covariance of u and w.
We will call them u-bias, v-bias, w-bias and stress-bias, respectively, and denote
them δu, δv, δw and δ∗.

The v-bias v-bias

δv =
〈v2〉
2U2

,

stands out by itself. It is not ‘mixed up’ with any of the other velocity components
or with the response. Obviously, there would be no v-bias if there were no wind-
direction fluctuations. The bias is there because the cup anemometer responds, not
only to the longitudinal velocity component ũ, but to the total horizontal wind
component

√
ũ2 + ṽ2. Therefore there will be a contribution which corresponds

exactly to the third term in the last line of (9). If we were interested in the mean
of the total horizontal wind speed we would not call v-bias a bias at all¶.

Now we evaluate 〈s2〉, 〈su〉 and 〈ws〉 in (58) by means of the first-order solution 〈s2〉, 〈su〉 and 〈ws〉
(29). Introducing the covariance functions

Ru(τ) = 〈u(t)u(t+ τ)〉, (59)

Ruw(τ) = 〈u(t)w(t + τ)〉 (60)

and

Rw(τ) = 〈w(t)w(t + τ)〉, (61)

we get, using (29),

〈su〉 =
1
�

∫ ∞

0

{Ru(τ) + µ1Ruw(−τ)} exp(−τ/τ0)
dτ

τ0
(62)

and

〈ws〉 =
1
�

∫ ∞

0

{Ruw(τ) + µ1Rw(τ)} exp(−τ/τ0)
dτ

τ0
. (63)

Noting that s to the first order is a stationary time series for which

0 =
d〈s2〉
dt

= 2〈sṡ〉, (64)

we can determine 〈s2〉 from (62) and (63) by multiplying the first-order perturba-
tion equation (28) by s and averaging. This procedure results in

〈s2〉 =
1
�
{〈us〉 + µ1〈ws〉}

=
1
�2

∫ ∞

0

{Ru(τ) + µ1[Ruw(τ) +Ruw(−τ)] +Rw(τ)}

× exp(−τ/τ0)
dτ

τ0
. (65)

¶This bias is known in the literature under the name ‘DP-error’ (MacCready, 1966), which
stands for data-processing error.
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It turns out to be convenient to express the biases in terms of the power spec-
tra, Su(ω) and Sw(ω), and the cross-spectrum Suw(ω). Therefore we write the
covariances as

Ru(τ) =
∫ ∞

−∞
Su(ω) exp(iωτ)dω (66)

Ruw(τ) =
∫ ∞

−∞
Suw(ω) exp(iωτ)dω (67)

and

Rw(τ) =
∫ ∞

−∞
Sw(ω) exp(iωτ)dω, (68)

where

Su(ω) =
1
2π

∫ ∞

−∞
Ru(τ) exp(−iωτ)dτ, (69)

Suw(ω) =
1
2π

∫ ∞

−∞
Ruw(τ) exp(−iωτ)dτ (70)

and

Sw(ω) =
1
2π

∫ ∞

−∞
Rw(τ) exp(−iωτ)dτ. (71)

The cross-spectrum Suw(ω) is in general complex and is traditionally expressed in
terms of the even cospectrum Couwω and the odd quadrature-spectrum Quw(ω)
as

Suw(ω) = Couw(ω) + iQuw(ω). (72)

Substituting (66), (67) and (68) into (62), (63) and (65), we get

〈su〉 =
1
�

∫ ∞

−∞

Su(ω)
1 + ω2τ2

0

dω +
µ1

�

∫ ∞

−∞

Couw(ω) + ωτ0Quw(ω)
1 + ω2τ2

0

dω, (73)

〈ws〉 =
µ1

�

∫ ∞

−∞

Sw(ω)
1 + ω2τ2

0

dω +
1
�

∫ ∞

−∞

Couw(ω) − ωτ0Quw(ω)
1 + ω2τ2

0

dω (74)

and

〈s2〉 =
1
�2

∫ ∞

−∞

Su(ω)
1 + ω2τ2

0

dω+
µ2

1

�2

∫ ∞

−∞

Sw(ω)
1 + ω2τ2

0

dω+
µ1

�2

∫ ∞

−∞

2Couw(ω)
1 + ω2τ2

0

dω.(75)

Equations (73), (74) and (75) show that most of the contributions to the co-
variances 〈su〉 and 〈ws〉 and to the variance 〈s2〉 come from the low-frequency
part of the variances 〈u2〉 and 〈w2〉 and the covariance 〈uw〉. As we shall see, it
will be convenient to decompose these last quantities in their low-frequency and
high-frequency parts according to

〈u2〉 = Ru(0) =
∫ ∞

−∞

Su(ω)
1 + ω2τ2

0

dω +
∫ ∞

−∞

ω2τ2
0

1 + ω2τ2
0

Su(ω)dω, (76)
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〈uw〉 = Ruw(0) =
∫ ∞

−∞

Couw(ω)
1 + ω2τ2

0

dω +
∫ ∞

−∞

ω2τ2
0

1 + ω2τ2
0

Couw(ω)dω (77)

and

〈w2〉 = Rw(0) =
∫ ∞

−∞

Sw(ω)
1 + ω2τ2

0

dω +
∫ ∞

−∞

ω2τ2
0

1 + ω2τ2
0

Sw(ω)dω. (78)

It is now in principle easy to evaluate (58) by substituting (73) through (78) and
by applying the constraints (37), (38) and (46). However, let us go a little slow in
the beginning.

Imagine for a moment that there are no w-fluctuations. Then 〈w2〉 = 〈uw〉 = 0 u-bias
and 〈ws〉 = 0. Further, each of the equations (73) and (75) have only one term on
the right-hand side, namely that containing Su(ω). In this case, where there are
only contributions from fluctuations in u, the entire relative bias 〈s〉/S is equal to
δu. Evaluation of (58) yields

δu =
�τ0
2U

{
∂2F

∂S2 〈s
2〉 + 2

∂2F

∂S∂U
〈su〉 +

∂2F

∂U2 〈u
2〉
}

=
�τ0
2U

{
∂2F

∂S2 + 2
∂2F

∂S∂U
+
∂2F

∂U2

}∫ ∞

−∞

Su(ω)
1 + ω2τ2

0

dω

+
�τ0
2U

∂2F

∂U2

∫ ∞

−∞

ω2τ2
0

1 + ω2τ2
0

Su(ω)dω

=
�Uτ0

2
∂2F

∂U2

1
U2

∫ ∞

−∞

ω2τ2
0

1 + ω2τ2
0

Su(ω)dω, (79)

where we have used (37) to obtain the last line.

Equation (79) shows that the u-bias is proportional to the integral of the product
of the spectrum Su(ω) and the high-pass filter

H(ω) =
ω2τ2

0

1 + ω2τ2
0

, (80)

i.e. the high-frequency u-variance, divided by U2. Going back to (48), we identify
as the factor in front of 1/U2 as the coefficient a4, introduced by Wyngaard et al.
(1974). We may therefore also write (79) as

δu =
a4

U2

∫ ∞

−∞

ω2τ2
0

1 + ω2τ2
0

Su(ω)dω. (81)

This final result makes intuitively a lot of sense. We expect the u-bias to be larger
for larger relative turbulence intensities

√
〈u2〉/U . Since the power spectrum Su(ω)

is in fact proportional to the variance of the longitudinal velocity component, (79)
or (81) shows that δu is proportional to the square of the relative turbulence
intensity. The integral picks out the high-frequency part of the spectrum as the
part of the variance which contributes. Fluctuations faster than the reciprocal of
the time constant τ0 contribute whereas the anemometer is fast enough to follow
fluctuations slower than 1/τ0, so that these are correctly contributing to the mean.

Figure 3 shows the situation. A typical power spectrum of u(t), normalized by the Integral time scale
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variance 〈u2〉, is shown as a function of the dimensionless frequency ωTu, where

Tu =
∫ ∞

0

Ru(τ)
Ru(0)

dτ (82)

is the so-called integral time scale of the time series u(t)—a measure of the ‘mem-
ory’ of u(t) in the sense that Ru(τ) for τ = Tu has decreased to a value numer-
ically ‘small’ compared to Ru(0). The typical spectrum has a low-frequency part
|ω|<∼T −1

u where it does not vary much and a high-frequency part where it decreases
as a power law.

The high-pass filter function H(ω) is shown for three different values of the ratio
τ0/Tu.

We see that if the anemometer is slow (τ0 � Tu) we get more u-bias than when
it is fast (τ0 � Tu).

0.001

0.01

0.1

1

0.01 0.1 1 10 100

ωTu

Su(ω)

τ0/Tu = 25 τ0/Tu = 1 τ0/Tu = 0.01

Figure 3. The spectrum Su(ω) (solid line) and the high-pass filter H(ω), given in
(80) (dotted lines), for three different values of the ratio τ0/Tu.

Now we imagine that there are no u-fluctuations. Proceeding as in the case of the w-bias
u-bias, we obtain

δw =
µ2

2
1
U2

∫ ∞

−∞

Sw(ω)
1 + ω2τ2

0

dω +
�Uτ0

2
∂2F

∂W 2

1
U2

∫ ∞

−∞

ω2τ2
0

1 + ω2τ2
0

Sw(ω)dω. (83)

In this case there is both a low-frequency and a high-frequency term. Again, using
(48), we see that (83) can be written

δw =
µ2

2U2

∫ ∞

−∞

Sw(ω)
1 + ω2τ2

0

dω +
a5

U2

∫ ∞

−∞

ω2τ2
0

1 + ω2τ2
0

Sw(ω)dω. (84)
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This result can be simplified even further if we assume the validity of (53). In that
case

δw ≈ a5
〈w2〉
U2

≈ µ2

2
〈w2〉
U2

. (85)

In other words, the w-bias is, apart from the coefficient a5, simply equal to the
squared, relative turbulence intensity of w. By looking back at the expression
(44), we note that if the anemometer has a cosine angular response, which implies
µ2 = 0, the w-bias is zero.

Finally, when there are both u-and w-fluctuations, the last bias contribution, the Stress-bias
stress-bias, is

δ∗ = �Uτ0
∂2F

∂U∂W

1
U2

∫ ∞

−∞

ω2τ2
0

1 + ω2τ2
0

Couw(ω)dω

+ Uτ0

{
µ1

∂2F

∂S∂U
− ∂2F

∂W∂S

}
1
U2

∫ ∞

−∞

ωτ0
1 + ω2τ2

0

Quw(ω)dω

=
a7

U2

∫ ∞

−∞

ω2τ2
0

1 + ω2τ2
0

Couw(ω)dω

+
µ1a6 − a8

U2

∫ ∞

−∞

ωτ0
1 + ω2τ2

0

Quw(ω)dω. (86)

We see that measuring the coefficients a1 . . . a8 and the angular response of a cup
anemometer in a wind tunnel, we can quantify the entire overspeeding if we know
the second-order characteristics of the velocity turbulence, including spectra and
cross-spectra of u and w.

From an application point of view, this is very satisfactory. It would, from a more
theoretical point of view, be even better if we could relate all these coefficients and
second derivatives to a few parameters characterizing the instrument. In the next
section we shall see how this is possible by constructing a simple, phenomenological
model for the torque exerted on the cup rotor by the wind field.

2.5 Modelling Wind Forcing

In last subsection we discussed a very simple model of the torque from the wind
on a cup-anemometer rotor. It was based on the assumption that the cup is a
moving drag-element with a drag coefficient depending on the orientation of the
cup with respect to the direction of the wind. We did this in order to understand
qualitatively why the cup anemometer overspeeds and not underspeeds. Here I
suggest a model which is not only based on the assumption that the torque is a
second-order polynomial in the wind speed and the cup-rotor speed, but also takes
into account what we know about the calibration and the first-order response to
a change in the wind speed.

Introducing for convenience the notation

h̃ =
√
ũ2 + ṽ2 (87)

for the instantaneous, total horizontal wind speed component, we hypothesize with
many others [see e.g., Kaganov and Yaglom (1976) or Coppin (1982)] a form of the
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function F (s̃, h̃, 0) based on the assumption that the torque of the turbulent wind
is a homogeneous, second-order polynomial in s̃ and h̃. We add the constraint that Constraints on torque

expressionthe two roots in F (S,U, 0) = 0 must have opposite sign. Otherwise there would
be no unambiguous calibration S = U/�. The possibility that S = U/� is a double
root must be ruled out because it implies that not only F (S,U, 0), but also ∂F/∂S
is zero, corresponding to an infinite time scale τ0 according to (11). With this in
mind, I suggest the following form

F (s̃, h̃, 0) =
1
2
ρC

Ar

I
(h̃− �s̃)(h̃+ Λs̃). (88)

Here C is a dimensionless constant, ρ the density of air, A an effective cup area, r
an effective radius of the cup rotor and I its moment of inertia. The quantity Λ is
some positive instrument length scale, the significance of which will be explained
later.

Kondo et al. (1971) found a similar expression for F (s̃, h̃, 0), but they inferred from
measurements by Brevoort and Joyner (1935) that the equivalent of Λ should be
negative. This could be an indication that Λ is so small compared to � that it is
difficult to determine experimentally.

Busch (1965) [see also Busch et al. (1980)] suggested a somewhat more general
expression which is not limited to being a second-order polynomial in s̃ and h̃.
This model also implies that S is proportional to U if the friction can be neglected.

The first useful result we can derive from (88) is an expression for the time constant
τ0 which we introduced with (11). Taking the derivative with respect to s̃, we get

τ0 = −
(
∂F

∂S

)−1

=
1
U

2I
ρCAr(� + Λ)

. (89)

We note that the time constant is inversely proportional to U with a factor of Distance constant
proportionality which is determined entirely by the densities of air and the rotor
material and by the rotor geometry. Instead of using a time constant for a cup
anemometer it is more natural to use a distance constant

�0 = Uτ0 =
2I

ρCAr(� + Λ)
, (90)

because this quantity is a true instrument constant which does not depend on
the wind speed. The fact that a cup anemometer response is characterized by a
distance constant rather than a time constant has been confirmed experimentally
(MacCready, 1965).

Since the moment of inertia I is proportional to the rotor density ρr and to the
fifth power of its linear dimensions (∝ r) we conclude from (90) that the dis-
tance constant is proportional to ρr/ρ and r2/(� + Λ). The calibration distance
� is independent of the moment of inertia, i.e. of the density of the rotor mate-
rial, and determined entirely by the rotor geometry. It is proportional to r and
usually of the same order. If we assume that Λ scales with r, just like � does, we
conclude that the distance constant is proportional to r. The rotor of the Risø-70
model (Busch et al., 1980) is made of carbon reinforced plastic with a density ρr

of about 1.5 g cm−3. The radius r is 0.07 m and the distance constant �0 was
determined to be 1.7 m. This is a rather typical modern, sturdy cup anemometer,
which is used for routine measurements of mean wind speed by Risø National
Laboratory. Older models are typically made of steel and they are often larger,
with radii of about 0.15 m. They have distance constants of about 20 m and reacts
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consequently much slower than newer models of standard cup anemometers. The
smallest distance constant is reported Frenzen (1988). His miniature instrument
which is designed for turbulence measurements and is quite fragile and unsuited
for routine operations, has �0 = 0.25 m. The rotor is made of styrofoam and has
a radius of only 0.01 m.

Applying (90) the forcing function may now be rewritten as

F (s̃, h̃, 0) =
(h̃− �s̃)(h̃+ Λs̃)

�0(�+ Λ)
. (91)

We see that the forcing by the horizontal wind can be specified by means of the
three length scales, �, �0 and Λ.

I showed in the preceeding subsections how the first- and second derivatives of the
forcing function enter the second-order perturbation equation of motion and the
biases. All the derivatives with respect to S and U in the point (S(U), U, 0) can
now be expressed in terms of U , �, �0 and Λ as




∂F

∂S
∂F

∂U


 =




−U

�0
U

�0�


 (92)

and




∂2F

∂S2

∂2F

∂S∂U
∂2F

∂U2




=




−2
�Λ

�0(�+ Λ)

− �− Λ
�0(�+ Λ)

2
1

�0(�+ Λ)



. (93)

Equation (92) is consistent with (11), (12) and (90), as expected. More interesting
is the interpretation of the first three terms on the right-hand side in the first
line of (79). In the light of (93), the third term, proportional to 〈u2〉, is always
positive as already pointed out by more qualitative arguments. The first term,
proportional to 〈s2〉, is always negative. This means that the instrument response
s will not only damp, i.e. low-pass filter, the input through the first-order term,
but also try to counteract the overspeeding through the second-order term. The
second term, proportional to 〈su〉, can have either sign, depending on the length
scale Λ’s magnitude compared to �: if Λ < � the covariance 〈su〉 will help the
first term counteract the overspeeding and if Λ > � it will help the third term
enhancing it.

Translating (93) to the coefficients a1 . . . a8 introduced by Wyngaard et al. (1974),
we get by using (48) the identity Uτ0 = �0,




a3

a4

a6




=




1
2
∂2F
∂S2

�0
�

1
2
∂2F
∂U2 ��0

∂2F

∂S∂U
�0




=




− Λ
�+ Λ

�
�+ Λ

− �− Λ
�+ Λ



. (94)
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We see that the model fulfills (50). However, our model predicts still another
constraint,

a4 − a3 = 1, (95)

and the condition

a4 < 1. (96)

Wyngaard et al. (1974) found a4 − a3 = 1.19 ± 14%. Coppin (1982) got corre-
sponding values between 1.08 and 1.29.

The inequality (96) is, according to (48), fulfilled by the data by Wyngaard et
al. (1974). Coppin (1982), on the other hand, found that six out of the seven
anemometers he investigated had values of a4 larger than one. At the same time
he found that a1 was larger than one by about 0.2 for all seven anemometers. Our
model predicts that a1 is exactly one and the only possible way to understand the
results by Coppin (1982) in our framework is to accept that the offset speed U0 is
significant. It is possible to take U0 into account in our model and one result of
this generalization is that a4 must be divided by a2

1 before comparison with the
inequality (96). When this ‘normalization’ is carried out all his values of a4 fall
well below one.

These two tests of the model seems to be fulfilled only moderately well, but I feel
that the agreement is such that it is justified to apply the model to reformulate
the bias expressions in terms of its parameters.

Inserting (93) in (38) and (46), these relations take the forms

1
�

∂2F

∂W∂S
+

∂2F

∂U∂W
=

µ1

��0
(97)

and

2
µ1

�

∂2F

∂W∂S
+
∂2F

∂W 2 =
µ2

��0
+
µ2

1

��0

2Λ
�+ Λ

. (98)

Eliminating ∂2F/∂W∂S from (97) and (98), we get

∂2F

∂W 2 =
µ2

��0
+ 2µ1

∂2F

∂U∂W
− 2µ2

1

�0(�+ Λ)
, (99)

which is more general than (53).

At this point it is tempting to formulate a model for the torque which includes Forcing by the vertical
wind componentthe dependence on the vertical velocity component w̃. We will do it by securing

that the constraints (97) and (98) are fulfilled.

We note, by looking back at (31) and (34), that a small, vertical wind component
W has the same effect on the rotation rate as the increase µ1W in the horizontal
wind component. The first thing to do would therefore be to replace h̃ in (91) by
h̃+µ1w̃. This is sufficient to fulfil (97), but not (98). To accomplish that, without
violating (97) or any other constraints we have used, all we have to do is to add
a term proportional to w̃2. It is easily seen that the expression

F (s̃, h̃, w̃) =
(h̃+ µ1w̃ − �s̃)(h̃+ µ1w̃ + Λs̃)

�0(�+ Λ)
+
µ2w̃

2

2�0�
(100)

26 Risø–R–615(EN)



meets all our requirements.

With this equation for the torque we can now establish the complete translation
table between the coefficients a1 . . . a8 and the model parameters. Carrying out
all the differentiations of F (s̃, h̃, w̃) to second order and then setting (s̃, h̃, w̃) =
(U/�, U, 0), we get the result




a1

a2

a3

a4

a5

a6

a7

a8




≡




1

µ1

1
2
∂2F
∂S2

�0
�

1
2
∂2F
∂U2 ��0

1
2
∂2F
∂W 2 ��0

∂2F

∂S∂U
�0

∂2F

∂U∂W
��0

∂2F

∂W∂S
�0




=




1

µ1

− Λ
�+ Λ

�
�+ Λ
µ2

1�
�+ Λ + µ2

2

− �− Λ
�+ Λ

2µ1�
�+ Λ

−µ1
�− Λ
�+ Λ




. (101)

Our phenomenological model shows that the dynamic behavior of a cup anemome-
ter can be described to second order in perturbations around a calibration point
(S,U,W ) = (U/�, U, 0) by five independent parameters. The four of them are
those which traditionally are specified. They are the calibration distance �, which
specifies the translation from signal to wind speed, the distance constant �0 char-
acterizing the low-pass filtering of the anemometer and the two dimensionless pa-
rameters µ1 and µ2 accounting for the sensitivity to the vertical wind component.
They can obtained by use of a low-turbulence wind tunnel. This is obvious what
�, µ1 and µ2 are concerned. The distance constant can be determined by holding
and releasing the cup rotor in a constant wind (cf. discussion about response to
step input on page 10). The last parameter, the length scale Λ, I have not been
able to interpret so far. It does not manifest itself in the steady-state calibration or
in the first-order dynamics as is the case with the other four parameters. Looking
at the translation table (101), we see that we can determine Λ by measuring the
second derivatives of the torque F with respect to the response S and U .

We will now see how the parameters introduced here enter the expressions for the
biases δu, δw and δ∗.

2.6 Overspeeding Revisited

In this subsection we will apply the results from the simple phenomenological
model we have just discussed to overspeeding. In the following subsection we will
quantify the four types of biases δu, δv, δw and δ∗ by means of the measurements
by Wyngaard et al. (1974) and surface-layer parameters describing the spectra.

The simplest contribution to the overspeeding is the u-bias. Applying (94) to (81), u-bias
we get

δu =
�

�+ Λ
1
U2

∫ ∞

−∞

ω2(�0/U)2

1 + ω2(�0/U)2
Su(ω)dω. (102)
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At this point it seems appropriate to apply Taylor’s hypothesis which states that Taylor’s hypothesis
all fluctuations of a turbulent quantity at a fixed point can be attributed to ‘frozen’
turbulence being carried past a fixed point by the mean wind. This is of course an
idealization because the eddies move themselves around, even statistically, but the
characteristic time it takes an eddy to ‘complete a revolution’ is long compared
to the time it takes to carry it by the observing point. This time is dependent
on the mean wind speed U ; the larger it is the better Taylor’s hypothesis works.
It is easily seen that the most important ‘number of merit’ by which to judge
the validity of this hypothesis is the relative turbulence intensity

√
u2/U . If this

number is very small, Taylor’s hypothesis works very well. Lumley and Panofsky
(1964) discuss it in quite some detail. They state the result that if

√
u2/U<∼1/3

it is not experimentally possible in a field situation to detect deviations from the
hypothesis up to 90 m. This means in a semiquantitative language that eddies
with linear dimensions up to 90 m then will pass an observation point with speed
U without changing shape noticeably. The condition that the relative turbulence
intensity has to be small compared to one must be fulfilled in any case for our
perturbation theory to work.

In frequency domain Taylor’s hypothesis works statistically as the simplest pos-
sible dispersion relation between frequency ω and wave number k, defined as 2π
divided by the wavelength:

ω = kU. (103)

This means that we can simply change variables to k by using the relation

Su(k) = Fu(k)
dk

dω
=

1
U
Fu(k), (104)

where Fu(k) is the longitudinal spectrum in wave-number domain. Over the years—
and in particular since the nineteen sixties—a lot of experimental information has
been compiled about Fu(k), information which will help us quantify the overspeed-
ing, as we shall see.

We reformulate (102) in terms of Fu(k) with the result

δu =
�

�+ Λ
1
U2

∫ ∞

−∞

k2�20
1 + k2�20

Fu(k)dk. (105)

We see how convenient this formulation is in case of a cup anemometer: the turbu-
lence is a ‘frozen’, random spatial structure, with a characteristic linear dimension
Lu = UTu, being carried through the cup anemometer, which probes it with a
linear low pass filter with a length constant equal to �0, along the mean wind
direction. At the same time, the cup anemometer measures the mean wind speed
with a bias, which is proportional to the area under the spectrum, after this has
been multiplied by the high-pass filter,

G(k) =
k2�20

1 + k2�20
= 1 − 1

1 + k2�20
. (106)

Incidentally, this filter is exactly ‘complementary’ to the low-pass filter 1−G(k) =
1/(1+k2�20) through which the anemometer ‘sees’ the turbulence. Instead of com-
paring the anemometer time constant τ0, which is not an instrument constant,
but inversely proportional to U , with the integral time scale Tu (82), which is also
inversely proportional to U for frozen turbulence, we compare length with length,
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�0 with Lu, when we want to understand and interpret the cup anemometer signal
and estimate the u-bias.

Figure 4, which is a ‘Taylor-translation’ of Figure 3 to wave-number domain il-
lustrates what is going on in (105). The u-bias is an increasing function of �0/Lu

and, eventually, when this ratio goes to infinity, the integral becomes equal to the
variance 〈u2〉.

0.001

0.01

0.1

1

0.01 0.1 1 10 100
kLu

Fu(k)

�0/Lu = 25 �0/Lu = 1 �0/Lu = 0.01

Figure 4. The spectrum Fu(k) (solid line) and the high-pass filter G(k), given in
(106) (dotted lines) for three different values of the ratio �0/Lu.

Based on (105), we see that the upper limit to δu is the square of the turbulence
intensity

√
〈u2〉/U ; the factor �/(�+ Λ) in front of the integral is less than unity

and the integral is equal to the fraction of the variance of those eddies which are
smaller in linear dimensions than �0.

Using (101), we can now formulate the w-bias, (84), and the stress bias, (86), as w-bias and stress-bias

δw =
µ2

2
〈w2〉
U2

+
µ2

1�

�+ Λ
1
U2

∫ ∞

−∞

k2�20
1 + k2�20

Fw(k)dk (107)

and

δ∗ =
2µ1�

�+ Λ
1
U2

∫ ∞

−∞

k2�20
1 + k2�20

Co(k)dk, (108)

where, just as in (104), we have applied Taylor’s hypothesis to translate the spectra
Sw(ω) and Couw(ω) in frequency domain to their counterparts Fw(k) and Co(k)
in wave-number domain.

It is a consequence of our model for the torque that the coefficient µ1a6 − a8 in
front of the integral containing the quadrature spectrum in (108) is zero. The
measurements (48) by Wyngaard et al. (1974) render this quantity 0.08 ± 0.14,
consistent with the model prediction.
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We note that there are two terms in the w-bias, one proportional to the entire
variance and one proportional to the high-frequency variance of w̃. The last term is
analogous to the u-bias—remember, a small deviation w from zero of the vertical
velocity component is equivalent to a small deviation in the horizontal velocity
component equal to µ1w. The term is the variance of small scale fluctuations of
w̃ and therefore the parameter µ1 enters as µ2

1.

According to (48), µ2
1�/(� + Λ) = a2

2a5 is about 0.004 and therefore quite small
compared to µ2/2 ≈ a5 = 0.67. Further, the first term contains the entire variance
of w̃ whereas the second contains only the high-wave number part of the variance.
On basis of this, we will neglect the second term in the following.

While the u-bias is always positive and the sign of the w-bias is given by the sign
µ2, it is difficult to tell whether the stress-bias is positive or negative. The low
wave-number bulk of the cospectrum is negative under normal conditions in the
atmospheric surface layer; the atmosphere transfers momentum to the surface so
that u and w are anti-correlated‖. In the high wave-number part, corresponding
to k-values of the order of magnitude of the reciprocal height, the cospectrum is
numerically very small and it is hard to tell if it sometimes is positive. Kaimal et
al. (1972) find, on experimental basis, that it is reasonable to assume the Co(k)
is negative for all values of k. Assuming this, the integral in (108) is negative.
Consequently, stress-bias will have the opposite sign of µ1 in the surface layer.

We can interpret this result qualitatively by considering what the downward mo-
mentum transport consists of. At a particular position it consists of series of small
bursts of downward transport of positive momentum (u > 0 and w < 0), termed
sweeps, and upward transport of negative momentum (u < 0 and w > 0), ejections
(see e.g., Robinson, 1991). If we have a negative value of µ1 = ��0∂F/∂W/U , the
sweeps will be enhanced and the ejections suppressed. The net result is in this
case a positive stress-bias.

We see that if the anemometer has cosine angular response then, according to
(44), µ1 = µ2 = 0 with the consequence that δw = δ∗ = 0.

The four biases δu, δv, δw and δ∗, making up the overspeeding by addition, can be
said to be of two types according to the scale of the variance entering. Whereas
δu and δ∗ according to (105) and (108) contain only the small scale variance, δv
and δw are both proportional to the variance from all scales. As we shall see in
next section, this has very important consequences for the relative contributions
of the four biases.

2.7 Overspeeding in the Surface Layer

As noted earlier, the v- and w-bias are of different character than u-bias and the
stress-bias. Here we will treat these first.

It is possible to evaluate the integral determining δu in (105) if the turbulent u-bias
length scale Lu of u is much larger than �0. Since a cup anemometer will typically
have a distance constant �0 of about 1 m and Lu is several times the height, this
condition is often met. In that case we can approximate the spectrum in the entire
integration domain by [see e.g., Kaimal et al. (1972)]

Fu(k) =
1
2
α1ε

2/3|k|−5/3, (109)
‖Kaimal et al. (1972) find that at numerically very low wave numbers |k| ∼ 0.003 rad s−1

there is a tendency for the cospectrum to be become positive in erratically scattered intervals
on the k-axis. This phenomenon is observed only under unstable conditions.
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where ε is the rate of dissipation of specific kinetic energy and α1  0.56 the
Kolmogorov constant for the longitudinal spectrum. The value of this constant is
chosen in accordance with the discussion by Kristensen et al. (1989)∗∗. The reason
that this approach works is that the integral (105) is actually convergent when we
apply (109) to the entire integration interval. Since

∫ ∞

0

ξ1/3

1 + ξ2
dξ =

π√
3
, (110)

we get

δu =
π√
3
α1

�

�+ Λ
(ε�0)2/3

U2
. (111)

Equation (111) overestimates the u-bias because the low-wave number part of the
spectrum is overestimated by (109). In Appendix A, I show that the resulting
overestimation of the u-bias is very small.

The basis for the spectrum (109) is that the turbulence in the wave-number domain Stress-bias
|k|>∼Lu can be considered locally isotropic, yet not affected by the dissipation. We
mean isotropic in the statistical sense and one consequence is that the correlation
between velocity components must be zero. This is of course an approximation
because it would mean that the cospectrum Co(k) would be identically zero in
the inertial subrange. The measured cospectrum of ũ and w̃ does indeed fall off
very rapidly in the inertial subrange. Wyngaard and Coté (1972) found, on basis
of the data presented by Kaimal et al. (1972) and dimensional analysis, that it
was well represented by

Co(k) = −1
2
ζ1
dU

dz
ε1/3|k|−7/3, (112)

where ζ1 ∼ 0.15 is a constant.

Using this form in the entire range of k, the integral (108) is convergent. The
result of the integration is

δ∗ = − 2µ1�

�+ Λ
ζ1
dU

dz
ε1/3 1

U2

∫ ∞

0

k2�2

1 + k2�20
k−7/3dk

= − π√
3

2µ1�

�+ Λ
ζ1

1
U2

dU

dz
�0(ε�0)1/3. (113)

As in the case of the u-bias, (113) will give a numerical overestimation of the
stress-bias because the low-wave number part of the cospectrum is incorrectly
represented by (112).

The two types of biases (111) and (113) have in common that they are limited in Surface layer results
the sense that only eddies smaller than the distance constant play a role. We can
evaluate them in the surface layer by using the Monin-Obukhov scaled expressions
for U(z), dU/dz and ε(z) [see e.g., Panofsky and Dutton (1984)]. The constant ζ1
is according to Wyngaard and Coté (1972) also a function of height, but it does
not vary much (perhaps by 30%), so we will treat it as a constant for convenience.

∗∗There has to be a factor 1/2 in front because α1 traditionally is defined for ‘one-sided’
spectra whereas we let k go from −∞ to ∞.
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In the surface layer, which is that part of the atmosphere which is so close to the
ground that the variation of the friction velocity

u∗ =
√
−〈uw〉 (114)

with height can be neglected, an important characteristic length scale to describe
profiles of first and higher moments of velocities and scalars is the Monin-Obukhov
length

L = −u
2
∗
κg

T

T∗
. (115)

Here κ is the von Kármán constant, equal to about 0.4 according to Zhang et al.
(1988), g the acceleration of gravity, T the mean temperature of the surface layer
and

T∗ =
〈wθ〉
u∗

(116)

the upward turbulent flux of potential temperature θ divided by the friction ve-
locity (114).

The ratio z/L is proportional to the ratio between the production of specific
turbulent kinetic energy by buoyancy and shear. Panofsky and Dutton (1984)
have a full discussion of all these concepts and also the expressions we are going
to use.

In a neutrally stratified surface layer the gradient dU/dz of the mean wind speed is
proportional to the friction velocity u∗ and inversely proportional to the height z.
This can be seen in different ways—by first-order closure theory (see e.g., Panofsky
and Dutton, 1984) or by first-order matching of wind profiles in the boundary layer
(Tennekes and Lumley, 1972 and Tennekes, 1981). When the surface layer is not
neutral, the extra scaling length L makes it impossible to maintain such a simple
assumption about the gradient. In this case we write

dU

dz
=
u∗
κz
ϕm

( z
L

)
, (117)

where ϕm(z/L) is the so-called diabatic correction. If there is no buoyancy produc-
tion of turbulence, i.e. if the surface layer is neutrally stratified, the argument z/L
is zero and the function ϕm(z/L) one. In that case the gradient of U is inversely
proportional to the height z and U(z) consequently logarithmic.

Integrating the general expression (117) with respect to z we obtain

U(z) =
u∗
κ

{
ln
(
z

z0

)
− ψm

( z
L

)}
, (118)

where z0 is the roughness length and

ψm

( z
L

)
=
∫ z/L

z0/L

{1 − ϕm(ζ)}dζ
ζ

≈
∫ z/L

0

{1 − ϕm(ζ)}dζ
ζ
. (119)

The rate of dissipation of specific kinetic energy is in general also a function of
z/L and is written

ε(z) =
u3
∗
κz
ϕε

( z
L

)
. (120)

32 Risø–R–615(EN)



With all these parameters describing the profiles of the wind speed, the wind-
speed gradient and the dissipation rate, we can reformulate the u-bias and the
stress-bias as follows

δu =
π√
3

�

�+ Λ
α1κ

4/3χu

(
z

z0
,
z

L

)(
�0
z

)2/3

(121)

and

δ∗ = − π√
3

2µ1�

�+ Λ
ζ1κ

2/3χ∗

(
z

z0
,
z

L

)(
�0
z

)4/3

. (122)

We have introduced the two functions

χu

(
z

z0
,
z

L

)
=
{

ln
(
z

z0

)
− ψm

( z
L

)}−2

ϕ2/3
ε

( z
L

)
(123)

and

χ∗

(
z

z0
,
z

L

)
=
{

ln
(
z

z0

)
− ψm

( z
L

)}−2

ϕm

( z
L

)
ϕ1/3

ε

( z
L

)
, (124)

which are shown in Figures 5 and 6 for unstable stratification and values of z/z0
representing the end points of a typical interval of this quantity.

Following Carl et al. (1973), we have here chosen

ϕm

( z
L

)
=
(
1 − 16

z

L

)−1/3

, (125)

thus obtaining

ψm

( z
L

)
=

3
2

ln
(

1 + ξ + ξ2

3

)
−
√

3 arctan
(

1√
3
ξ − 1
ξ + 1

)
, (126)

where

ξ =
(
1 + 16

∣∣∣ z
L

∣∣∣)1/3

, (127)

and

ϕε

( z
L

)
= 1 − z

L
. (128)

Qualitatively the u-bias and the stress-bias differ in their dependence on the ratio
of the distance constant to the height. The first contains the ratio to the power
2/3, the second to the power 4/3. Further, χ∗(z/z0, z/L) is an order of magni-
tude smaller than χu(z/z0, z/L). Finally, the constant α1κ

4/3 in the expression
for δu is much larger than the corresponding constant 2µ1ζ1 in that for δ∗. The
first constant, the so-called K-von K product (Kolmogorov and von Kármán), is,
according to Frenzen and Hart (1983) [see also Kristensen et al. (1989)] 0.165,
whereas 2µ1ζ1κ

2/3 with the data (48) by Wyngaard et al. (1974) becomes 0.01.

In a very unstable situation with L = −10 m, the u-bias becomes about 1.6%, if
we are conservative and assume that Λ is much smaller than �, and measure in
the height z = 10 m with a cup anemometer with a distance constant �0 = 2 m
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Figure 5. The function χu(z/z0, z/L) for negative values of z/L.

over a terrain with z0 = 0.1 m. Of course, if we measure with a heavy, large cup
anemometer with �0 = 10 m we get δu = 4.6%, but even this instrument will only
give rise to a u-bias of about 1.4% under neutral conditions.

As shown, the stress-bias will, unless the ratio �0/z is much larger than one, be at
least one order of magnitude smaller.

We can easily calculate the u-bias and the stress-bias in stable stratification, but
the variance 〈u2〉 and the covariance 〈uw〉 are much smaller in the inertial subrange
than in neutral and unstable situations and consequently the u-bias and the stress-
bias are also much smaller.

The v-bias and the w-bias enter unfiltered by the anemometer as shown in (58) v- and w-bias
and (107). They are

δv =
〈v2〉
2U2

(129)

and

δw = µ2
〈w2〉
2U2

. (130)

Taking µ2/2 = a5 = 0.67 [see (48) and (94)] as a typical value the two biases δv
and δw look as if they were similar in magnitude. This, however, is not always the
case and in particular not when the surface layer cannot be assumed neutral.

The w-bias is usually smaller than the v-bias and occasionally much smaller. This w-bias
is so because the size of the eddies of vertical velocity and, consequently, their
contribution to the variance of w̃ is limited by the height. In the surface layer this
variance increases with decreasing z/L and Panofsky and Dutton (1984) suggest
that its square root under unstable conditions can be written

√
〈w2〉
u∗

= ϕ3

( z
L

)
= 1.25

{
1 − 3

z

L

}1/3

. (131)
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Employing (131) together with (118) in (130) we get

δw = µ2
κ2

2

{
ln
(
z

z0

)
− ψm

( z
L

)}−2

ϕ2
3

( z
L

)
. (132)

With L = −10 m, z = 10 m, z0 = 0.1 m and µ2 = 2a5 = 1.34, we get δw ≈
0.016µ2 ≈ 2.1%. In the same height and with the same roughness length, the
w-bias is δw ≈ 0.006µ2 ≈ 0.8% for neutral stratification.

The expression (129) for the v-bias contains no parameters from the cup anemome- v-bias
ter [which is strictly speaking an approximation because it is based on the assump-
tion that U0 is zero in (4)]; it is simply half of the square of the relative turbulence
intensity of ṽ. In contrast to the variance of w̃ the variance of ṽ is not limited
by the height (Kaimal et al., 1976) anywhere in the convective boundary layer,
including the surface layer. It does not scale with z/L, but rather with zi/L, where
zi is the depth of the convective boundary layer and it can become quite large
compared to 〈w2〉. Panofsky and Dutton (1984) support this statement concerning
the surface layer and observe that also under neutral and stable conditions (Smith
and Abbott, 1961) will there occasionally be large values of 〈v2〉. Depending on
the averaging time the wind-direction fluctuations can be as large as 25◦ and this
means that δv can be 10% under both unstable and stable conditions.

According to Panofsky and Dutton (1984)

√
〈v2〉
u∗

=

√
〈u2〉
u∗

= ϕ1

(zi

L

)
=
{
12 − 0.5

zi

L

}1/3

(133)

fits observed data well under unstable conditions. The v-bias then becomes

δv =
κ2

2

{
ln
(
z

z0

)
− ψm

( z
L

)}−2

ϕ2
1

(zi

L

)
. (134)

With L = −10 m, z = 10 m, zi = 1000 m and z0 = 0.1 m, (134) yields δv ≈ 12%.

Kaganov and Yaglom (1976) present in their interesting introduction an account
for the controversies about overspeeding which has always meant u-bias in my
terminology. Kondo et al. (1971) find that it is small—less than a few percent—
whereas Izumi and Barad (1970) concluded that, based on comparison with sonic
anemometers, it amounted to no less than 10% in the 1968 Kansas Windy Acres The Kansas Experiment
field experiment (Haugen et al., 1971 and Businger et al., 1971). All the cup
anemometer measurements of mean wind speeds were consequently corrected down
by 10% in this famous field experiment. In field experiments there are occasionally
still large systematic differences between wind speeds measured by cup anemome-
ters and by sonic anemometers (Frenzen, 1991, private communication).

What was the situation in Kansas in 1968 then?

We can safely assume that the roughness length z0 was about 0.02 m as it is for
uncut grass (Panofsky and Dutton, 1984). The lowest measuring height was z =
5.66 m. The most unstable run had z/L = −2. We do not know the depth of the
boundary layer, but a typical value would be zi = 1000 m. Let us further assume
that the distance constant �0 was 2 m and that (µ1, µ2) = (a2, 2a5) = (0.06, 1.34).
With this information we can estimate all the four biases, assuming Λ � �. We
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Figure 6. The function χ∗(z/z0, z/L) for negative values of z/L.

get




δu

δv

δw

δ∗




=




2.2%

18.3%

1.8%

−0.01%




. (135)

We see that the v-bias under convective conditions is by far the most important
systematic error if the cup anemometer signal is interpreted as the mean of ũ. It
may be that we have assumed a too large value of zi, but even if zi were only
500 m, δv would still be 12%.

Under neutral stratification even δv becomes quite small; with the same height
and roughness we get, using

√
〈v2〉/u∗ = 1.92 from Panofsky and Dutton (1984),

δv ∼ 1%.

Izumi and Barad (1970) ‘emulated’ the cup anemometer signal from the sonic
signal by calculating the total horizontal wind speed 20 times per second and
averaging this quantity over 15 minutes. This average wind speed, now containing
the instrument independent v-bias, was compared to the 15 minutes average of
the cup anemometer signal. Their conclusion was that it was between 8 and 16%
smaller than the mean wind speed obtained from the cup anemometer. Since the
v-bias is the same for the sonic and the cup anemometer and since the effect of
different exposures has been accounted for, the implication of the investigation
by Izumi and Barad (1970) is that the sum of δu, δw and δ∗ must be 8 to 16%.
This contradicts (135) which states that this sum hardly amounts to more than
4%. The most likely explanation is that the cup anemometers and the sonics were
exposed differently as also pointed out by Wieringa (1980) [see also the discussion
between Wyngaard et al. (1982) and Wieringa (1982)]. The overspeeding problem
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in the Kansas experiment can probably not be solved.

There is a method to avoid v-bias by using the cup anemometer in conjunction
with a wind vane as we shall see later in section 4.

2.8 Afterthoughts

I have now come to the end of the discussion of the cup anemometer. Using a phe-
nomenological model, augmented by a more physical model based on assumptions
about the wind force on the rotor and about the linearity of the calibration, my
main conclusion is that cup-anemometer overspeeding is seldom a problem. Only
the v-bias can at times be large, but, as I will show in section 4, it is very easy to
remove this bias operationally.

However, there is a minor point I would like to take up before we leave this subject.

Until now we have tacitly assumed that the output s̃ of the anemometer is a Irregular rotation
‘smooth’, low-pass filtered picture of the wind speed. This is not correct. The
rotor does not turn with a constant angular velocity in a constant wind. It wobbles
because the rotor is not in itself axisymmetric so that the wind does not constantly
attack the same cup configuration. For example, a three-cup rotor has only a 120◦

rotation symmetry which means that s̃ is at best a periodic signal with a period
equal to one third of the full time ∆t of one rotor revolution. This is shown
experimentally by Coppin (1982) who has measured the torque F = ˙̃s in a wind
tunnel with a temporal resolution much smaller than ∆t. In order to eliminate the
effect of the uneven angular velocity of the rotor we must filter s̃ over at least one
period. This is done by measuring the time ∆t for each revolution. The implication
is that the cup anemometer operates as not only a first-order filter, characterized
by the distance constant �0, but as a combination of this filter and an unweighted
average over one revolution, corresponding to a line average of length 2π� along
the wind direction. This combined low-pass filter has the transfer function

H(k) =
sinc2(πk�)
1 + k2�20

, (136)

which is shown in Figure 7 for the Risø-70 model and in the limit �/�0 → 0.

As the figure shows, the extra low-pass filtering from averaging over one full rotor
resolution is only of consequence for the Risø-70 model when k�0>∼1 at which point
the transfer function already has fallen down to 0.5. The equation (136) shows that
if � ≈ �0 the cup anemometer cannot be considered a simple first-order filter.

3 Dynamics of Nonlinear Sensors

The nonlinear forcing theory of cup anemometers can be generalized to any first-
or higher-order sensor system. In Kristensen and Lenschow (1988) we analyzed
first- and second-order systems and applied our theory to predict the systematic
error in the measured mean for three different sensors with nonlinear forcing.

Our 1988-analysis was simpler than that of the cup anemometer because the sen-
sors were assumed to respond to only one input and not to two or more as is the
case with the cup anemometer: if the angular response is not ideal, i.e. not a cosine
response, it has two independent input, the horizontal wind component and the
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Figure 7. The transfer function H(k) as given by (136) for the Risø-70 model with
� = 0.2 m and �0 = 1.7 m and for a hypothetical cup anemometer with �/�0 = 0.

vertical wind component. On the other hand, we relaxed the condition that the
steady-state calibration should be linear.

A first-order system with input x̃ and response ỹ follows the equation First-order systems

˙̃y = F (ỹ, x̃), (137)

where the function F (ỹ, x̃) is a general forcing function of the input and the
response.

Just as in the case of the cup anemometer, the steady-state calibration is obtained
by letting the input x̃ stay constant until the system does not change its state
anymore, viz. ˙̃y is zero. In this situation the input X and the response Y satisfy
the equation

F (Y,X) = 0, (138)

which allows us to determine Y = Y (X) as a function of X .

Since the function F (Y,X) has such a form that the F (Y (X), X) is always zero,
the first and second derivatives of F (Y (X), X) with respect to X are also zero††.

In other words,

∂F

∂Y

dY

dX
+
∂F

∂X
= 0 (139)

††The same argument implies of course that all higher derivatives are zero. Considering only
second-order perturbations, however, we need not to worry about higher derivatives than the
second.
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and

∂F

∂Y

d2Y

dX2 +
∂2F

∂Y 2

[
dY

dX

]2
+ 2

∂2F

∂Y ∂X

dY

dX
+
∂2F

∂X2 = 0. (140)

We note that (140) has a term proportional to d2F/dX2 because we include sensors
with nonlinear calibration in our investigation.

Following the procedure we used when we analyzed the dynamics of the cup
anemometer, the input is written

x̃ = X + x, (141)

while the output is decomposed according to

ỹ = Y (X) + y. (142)

Substituting in (137) and expanding to second order in x and y in the neighbor-
hood of (X,Y (X)), we get in analogy to (36)

ẏ +
y

τ0
=
dY

dX

x

τ0
+

1
2

{
∂2F

∂Y 2 y
2 + 2

∂2F

∂Y ∂X
xy +

∂2F

∂X2x
2

}
, (143)

where

τ0 = −
(
∂F

∂Y

)−1

(144)

is the time constant, which in general is a function of X . As in the case of the cup
anemometer, ∂F/∂Y = −1/τ0 must be positive; otherwise the system would be
unstable for a small change x in the input (cf. the discussion of the response to a
step function on page 10).

To obtain the form of the first term on the right-hand side of (143) the first-order
constraint (139) was applied.

Following almost the same procedure as in the case of the cup anemometer, we,
Kristensen and Lenschow (1988), found that if the input x̃ to a first-order system
is not constant, the systematic error 〈y〉 of the measured mean is given by

〈y〉 =
1
2
∂2F

∂X2 τ0

∫ ∞

−∞

ω2τ2
0

1 + ω2τ2
0

Sx(ω)dω

+
1
2
d2Y

dX2

∫ ∞

−∞

Sx(ω)
1 + ω2τ2

0

dω, (145)

where Sx(ω) is the power spectrum of x̃.

There are two terms in (145). The first corresponds exactly to the u-bias (81) of
the cup anemometer. The second accounts for the non-linearity of the calibration
of the system. It is proportional to the second derivative of Y (X), i.e. the curvature
of the calibration curve, and to the low frequency part of the variance.

We can, as we pointed out in Kristensen and Lenschow (1988), understand in
what way this second term describes a systematic error if we imagine that the
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time constant τ0 is very small compared to the integral time scale of the process
x(t). In that case the first term is zero and the second becomes

lim
τ0→0

(〈y〉) =
1
2
d2Y

dX2

∫ ∞

−∞
Sx(ω)dω =

1
2
d2Y

dX2 〈x
2〉. (146)

We could have arrived at this result directly by neglecting the finite response time
of the system and averaging the calibration function with a fluctuating argument:

〈ỹ〉 = 〈Y (x̃)〉 = 〈Y (X + x)〉

≈
〈
Y (X) +

dY

dX
x+

1
2
d2Y

dX2x
2

〉
= Y +

1
2
d2Y

dX2 〈x
2〉, (147)

We see that our second-order perturbation theory, leading to (145) retrieves the
well-known effect of nonlinear calibration on measured means.

We will now generalize our second-order perturbation theory to second-order sys- Second-order systems
tems. Just like a first-order system is described mathematically by a first-order
differential equation like (137), the dynamic behavior of second-order system fol-
lows a second-order differential equation, i.e.

¨̃y = F (ỹ, ˙̃y, x̃). (148)

As in the case of a first-order system, the steady-state calibration is determined
by letting the input x̃ stay constant until the response ỹ has become constant. In
this situation, both the first and the second time derivatives of ỹ are zero and the
input X and the response Y must fulfil the equation

F (Y, 0, X) = 0. (149)

Again, solving this equation for Y , we obtain a calibration expression Y = Y (X)
and, just as in the case of a first-order system, the two constraints (139) and (140)
follow immediately.

Decomposing according to (141) and (142), and expanding (148) to the second
order in the neighborhood of (ỹ, ˙̃y, x̃) = (Y (X), 0, X), we get

¨̃y ≡ ÿ = F (Y + y, ẏ,X + x)

≈ ∂F

∂Y
y +

∂F

∂Ẏ
ẏ +

∂F

∂X
x

+
1
2

{
∂2F

∂Y 2 y
2 +

∂2F

∂Ẏ 2
ẏ2 +

∂2F

∂X2x
2

}

+
∂2F

∂Y ∂Ẏ
yẏ +

∂2F

∂Ẏ ∂X
ẏx+

∂2F

∂X∂Y
xy, (150)

where, according to the convention we use here, ∂/∂Y , ∂/∂Ẏ and ∂/∂X mean par-
tial differentiation with respect to ỹ, ˙̃y and x̃, respectively, in the point (Y (X), 0, X).

Since second-order systems must also be stable, both ∂F/∂Y and ∂F/∂Ẏ must Natural frequency
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be negative and we can introduce the natural frequency ω0 and the (positive)
damping coefficient ζ by Damping coefficient

∂F

∂Y
= −ω2

0 (151)

and

∂F

∂Ẏ
= −2ζω0. (152)

Equation (151) together with (139) implies that

∂F

∂X
= ω2

0

dY

dX
, (153)

so that we can reformulate (150) as

ÿ + 2ζω0ẏ + ω2
0y =

dY

dX
ω2

0x(t)

+
1
2

{
∂2F

∂Y 2 y
2 +

∂2F

∂Ẏ 2
ẏ2 +

∂2F

∂X2x
2

}

+
∂2F

∂Y ∂Ẏ
yẏ +

∂2F

∂Ẏ ∂X
ẏx+

∂2F

∂X∂Y
xy. (154)

Keeping only the first-order terms on the right-hand side, (154) is a linear, second-
order differential equation describing a damped oscillator, i.e. a second-order filter,
with the natural frequency ω0 and the damping coefficient ζ, subjected to the
forcing dY /dXω2

0x(t).

As in the case of a first-order filter like (14) we can imagine that the input x(t) is Response to step input
a step function given by

x =




0 for t < 0

∆X for t ≥ 0

. (155)

The output from the linear filter (154) is

y(t) =
dY

dX
∆X




1 − exp(−ζω0t)
{
cos
(√

1 − ζ2 ω0t
)

+ ζ√
1 − ζ2

sin
(√

1 − ζ2 ω0t
)}

, 0 ≤ ζ < 1

1 − exp(−ω0t) {1 + ω0t} , ζ = 1 ,

1 − exp(−ζω0t)
{
cosh

(√
ζ2 − 1ω0t

)
+ ζ√

ζ2 − 1
sinh

(√
ζ2 − 1ω0t

)}
, 1 < ζ <∞

(156)

shown in Figure 8 for four different values of ζ.
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When ζ ≥ 1 the solution (156) is an increasing function of time whereas it becomes
a damped oscillation for 0 < ζ < 1. In Figure 8, I have chosen to show the response
y(t) with the value ζ = 1/

√
2 because, in a certain sense, which is explained below,

this damping coefficient provides the best compromise between a fast response and
minimal ‘overshoot’.

The first-order solution to (154) with the initial conditions y(−∞) = 0 and
ẏ(−∞) = 0 is

y(t) =
dY

dX

ω0√
1 − ζ2

∫ ∞

0

x(t− t′)e−ζω0t′ sin
(√

1 − ζ2 ω0t
′
)
dt′, (157)

where the damping coefficient is assumed limited to the interval 0 < ζ < 1. If
ζ > 1, all we have to do is to replace ‘sin’ by ‘sinh’ and

√
1 − ζ2 by

√
ζ2 − 1; in

the special case ζ = 1 (157) has a well-defined limit.

If x(t) is a stationary time series, the power spectrum Sy(ω) of y(t) can be ex- Second-order transfer
functionpressed in terms of the power spectrum Sx(ω) of x(t) simply by

Sy(ω) = K(ω)Sx(ω), (158)

where

K(ω) =
(
dY

dX

)2
ω4

0

(ω2 − ω2
0)2 + 4ζ2ω2

0ω
2

(159)

is the transfer function for a second-order, linear filter. A discussion of this low-
pass filter, its response to a step input (157) and the transfer function (159) can
be found in Larsen and Busch (1974) in connection with the description of their
wind vane. In Figure 9 we have shown K(ω) for the same four values of ζ as in
Figure 8.

Figure 9 illustrates why the value ζ = 1/
√

2 is an advantageous choice of the Butterworth filters
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Figure 9. The transfer function K(ω), given by (159) for ζ =0.5, 1 and 2 (dots)
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damping coefficient of a second-order, linear filter: we usually prefer that the low-
pass filtered signal y(t) is attenuated as little as possible with respect to x(t) to as
high frequencies as possible and then ‘rolls off’ fast with increasing frequency. We
see that when the damping coefficient is greater than one, the transfer function
decreases rather slowly with the frequency. K(ω) decreases faster with frequency
the smaller the damping coefficient. When ζ is small compared to one, K(ω) will
have a maximum, which is usually undesirable. It turns out that the ‘roll off’ is
steepest, without K(ω) having a maximum, when ζ = 1/

√
2. The filter is then a

so-called Butterworth filter of second order (e.g. Stearns and David, 1988). It is
often said that a Butterworth filter has ‘maximum flatness’. The general form of
the transfer function Bn(ω) of a Butterworth filter of order n is

Bn(ω) =
(
dY

dX

)2
ω2n

0

ω2n
0 + ω2n

. (160)

In this context it is sometimes important to look at the phase delay. The filter has Phase delay
the property—as is also the case with a first-order filter like the cup anemometer—
that it can only ‘look back’ in time. By this I mean that it is the present and the
past of the input x(t) which determines the output y(t). This means that y(t) is
‘delayed’ with respect to x(t). The delay will depend on how rapid the input varies
as compared to the natural frequency ω0 of the filter: if it varies comparatively
slowly, the delay will be unimportant and if it varies fast, the delay can be of
considerably consequence. Formally the delay can be defined by letting x(t) be a
harmonic function of time, i.e.

x(t) = ∆X cos(ωt). (161)

Writing the output y(t) as the phase-shifted cosine,

y(t) =
√
K(ω)

dY

dX
∆X cos(ωt− βxy), (162)
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where K(ω) is given by (159) and βxy(ω) the delay, a necessary and sufficient
condition that (161) and (162) fulfil the linear part of (154) is that the phase-shift
is given by

βxy(ω) = arctan
(

2ζ
ωω0

ω2
0 − ω2

)
. (163)

This can been seen directly by substituting (161) and (162) in (154). The delay
βxy(ω) which, as expected, is a function of the frequency ω of the harmonic input,
is shown in Figure 10. We see that irrespective the value of the damping coefficient
ζ, the phase delay, or the phase distortion, is equal to π/2 when ω = ω0. What
is important is that when the damping coefficient is small, the phase delay stays
small closer to ω = ω0 than when it is large. Again, if we demand that the
transfer function K(ω) is monotonic and decreasing the best compromise is to let
ζ = 1/

√
2.

0
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Figure 10. The phase delay βxy(ω), given by (163) for ζ =0.5, 1 and 2 (dots) and
for ζ = 1/

√
2.

Taking the average of (154), we get an expression for the systematic error 〈y〉 due
to non-linear forcing,

ω2
0〈y〉 =

1
2

{
∂2F

∂Y 2 〈y
2〉 +

∂2F

∂Ẏ 2
〈ẏ2〉

+2
∂2F

∂Ẏ ∂X
〈ẏx〉 + 2

∂2F

∂X∂Y
〈xy〉 +

∂2F

∂X2 〈x
2〉
}
. (164)

We have assumed that x(t) is stationary so that y(t) to the first order is also
stationary. This implies that the term ∂2F/∂Y ∂Ẏ 〈yẏ〉 is identically zero and has
consequently been left out of (164).

Using the first-order solution (157) and its first derivative, Kristensen and Len-
schow (1988) determined the second-order moments on the right-hand side of
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(164). We used the two constraints (139) and (140) and should have arrived at
the following result

〈y〉 =
∫ ∞

−∞

H0(ω) +H2(ω) +H4(ω)
(ω2 − ω2

0)2 + 4ζ2ω2
0ω

2
Sx(ω)dω, (165)

where

H0(ω) =
ω4

0

2
d2Y

dX2 , (166)

H2(ω) = ω2

{
1
2
∂2F

∂Ẏ 2
ω2

0

[
dY

dX

]2

+
[
2
∂2F

∂Ẏ ∂X
ζω0 −

∂2F

∂X∂Y

]
dY

dX
+ 2

∂2F

∂X2

[
ζ2 − 1

2

]}
(167)

and

H4(ω) =
ω4

2ω2
0

∂2F

∂X2 . (168)

Unfortunately, we set H4(ω) = 0 by mistake.

The first of these functions is really a constant and will give rise to a bias which
is due to the non-linearity of the calibration Y = Y (X). This bias is proportional
to the low-frequency part of the variance of the input.

The second function is proportional to the square of the frequency and in (165)
the corresponding part of the systematic error can best be described as a bias due
to a band-passed part of the input variance.

The last function H4(ω) will, combined with the denominator in (165), be a high-
pass filter of the variance and it is consequently this term which corresponds most
closely to the first term in (145) for first-order systems.

In Kristensen and Lenschow (1988) we applied first- and second-order forcing
theory on three examples: the Pitot tube (Lenschow, 1986), the thrust anemometer
(Smith, 1980) and the CSIRO liquid water probe (King et al., 1978). The first has
first-order forcing, the two last second-order forcing. In the next three subsections
we will give an account of our analysis. However, it will not be nearly as detailed
as the discussion of the cup anemometer in section 2.

3.1 The Pitot Tube

This instrument is commonly used to measure air-flow speed in wind tunnels and
from aircraft. It measures the pressure difference q̃ between the so-called total
pressure (static pressure plus the kinetic energy density) and the static pressure.
In a constant wind ũ the relation between the measured pressure difference and ũ
is

q̃ =
1
2
ρũ2, (169)

where ρ is the air density.
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This equation is true only when ũ and q̃ are constant. In a fluctuating wind there
is an imbalance, approximately described by (Kristensen and Lenschow, 1988)

˙̃q =
1
τ 0

{
1
2
ρũ2 − q̃

}
. (170)

The time scale τ0 characterizes the pressure transmission time and is directly
proportional to the length of the pressure tubes.

Let us first consider q̃ as the response. This means that the forcing, by definition
[see (137)] is

F (q̃, ũ) =
1
τ 0

{
1
2
ρũ2 − q̃

}
. (171)

Being a bit repetitious, the steady-state calibration between the constant input U
and the constant response Q can be determined by the equation

F (Q,U) =
1
τ0

{
1
2
U2 −Q

}
= 0 (172)

with the result

Q =
1
2
ρU2. (173)

Decomposing input and response according to




ũ

q̃


 =




U + u

Q+ q


 , (174)

we obtain the second-order perturbation equation

q̇ +
q

τ0
= ρU

u

τ0
+

ρ

2τ0
u2. (175)

We note that the response q does not enter the right-hand side. This means that
in this case there is no second-order feedback.

Applying (145), we see that the first term, as a consequence of this missing feed-
back, is zero and that the bias simply becomes

〈q〉
Q

=
〈u2〉
U2

, (176)

i.e. the square of the relative turbulence intensity.

If we interpret q̃ as an instantaneous estimate ṽ of the wind speed by Linearization

ṽ =

√
2q̃
ρ
, (177)

the dynamic equation for the output ṽ becomes

˙̃v =
1

2τ0

(
ũ2

ṽ
− ṽ

)
. (178)
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The signal interpretation is called linearization and will of course lead to the linear
calibration.

The calibration with the instantaneous interpretation of q̃ of course leads to the
linear calibration

V = V (U) = U. (179)

The overspeeding becomes, again with the aid of (145),

〈v〉
V

=
1
U2

∫ ∞

−∞

ω2τ2
0

1 + ω2τ2
0

Su(ω)dω. (180)

While the cup anemometer (and other rotation anemometers) are characterized
by a distance constant the Pitot tube has a time constant. However, if we for a
given mean wind speed compare the overspeeding of the linearized signal from a
Pitot tube to that of the cup anemometer and assume a mean wind speed such
that the two time constants are the same, we see by comparing with (102) that
the Pitot tube has an overspeeding which is about the same as the u-bias of the
cup anemometer.

The maximum overspeeding is, according to (176) and (180) 〈u2〉/(U2), no matter
whether the signal is linearized or not. In an aircraft where typical values are√
〈u2〉 ∼ 1 m s−1 and U>∼50 m s−1 Pitot tube overspeeding is hardly of any

concern.

3.2 The Thrust Anemometer

Measurement of wind speed by a thrust anemometer is obtained by measuring the
drag force on a reference body, held in elastic suspension, so that its displacement
becomes proportional to the drag force.

In Kristensen and Lenschow (1988) we discuss the thrust anemometer developed
at Pennsylvania State University (Norman et al., 1976). This instrument has a
cylindrical styrofoam drag element mounted coaxially on the end of a thin ceramic
rod, which is fixed in the opposite end and thus provides the elastic suspension
force. Part of this rod is submerged in silicon oil for damping. The drag element
is 0.048 m long and has a diameter of 0.016 m. The length and diameter of the
ceramic rod are 0.012 m and 0.0025 m, respectively. In Kristensen and Lenschow
(1988) a sketch shows the anemometer and its geometrical dimensions.

The equation describing the displacement δ̃ in one direction is a second-order
differential equation

¨̃δ = F (δ̃, ˙̃δ, ũ). (181)

In vacuum the anemometer would, if it were set in motion, describe a damped
oscillation, characterized by the frequency ω1 which is proportional to the square
root of the restoring force, and the damping coefficient η. Most of the damping
could be ascribed to the damping oil.

In the wind the drag force is proportional to the square of the relative velocity
˙̃δ− ũ of the drag element compared to the wind and the total forcing function can
be written

F (δ̃, ˙̃δ, ũ) = −2ηω1
˙̃
δ − ω2

1 δ̃ +
1
�t
{ũ− ˙̃

δ}2, (182)
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where �t is an instrument length scale.

Again, the calibration is determined by

F (∆, 0, U) = 0, (183)

so that

∆ ≡ ∆(U) =
U2

�tω2
1

. (184)

With this equation and the theory for the bending and oscillations of a beam
(the ceramic rod), which is clamped in one end, it is possible to give a physical
interpretation of the length �t. According to standard literature such as Sommer-
feld (1964) or Feynman et al. (1964), the displacement ∆ is under steady-state
conditions given by

∆ =
1
3
FD

EI λ
3, (185)

where FD is the drag force on the drag element and where λ is the length, E
Young’s modulus (ratio between stress and strain) and I the cross-sectional mo-
ment of inertia (dimension length to the fourth power) of the rod. The drag force
is, with the same notation as that used in (88) for the cup anemometer,

FD =
1
2
ρCAU2. (186)

The area A is here the projected area of the cylindrical drag element. Since the
Reynolds number based on the diameter of the this drag element is of the order
104, the drag coefficient C is approximately one (Feynman et al., 1964).

Following Clough and Penzien (1975) and the arguments by Panofsky and Dutton
(1984), the frequency ω1 of the free oscillation of a clamped rod is given by E, I
and the mass M as

ω2
1 ≈ 3.516

EI
Mλ3

. (187)

Substituting (186) in (185) and multiplying the result with (187), we can reproduce
(184) in the form

M∆ω2
1 ≈ 0.6ρCAU2. (188)

The left-hand side is the mass of the rod times the acceleration in free oscillation
of its top, whereas the right-hand side is the forcing by the wind. Equation (188)
is the overall description of the motion the rod would perform, if we imagine that
the air with wind speed U suddenly disappeared so that there is vacuum around
the anemometer.

We see that the characteristic length �t is proportional to the length of the rod λ
and the ratio between the density ρc of ceramic and that of air ρ; since M = ρcAλ

we may combine (184) and (188) to obtain the approximate relation

�t ≈
M

0.6ρCA
≈ λ

ρc

ρ
. (189)
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To determine ω0 and ζ, we differentiate (184) once and twice with respect to U .
These derivatives become

d∆
dU

=
2U
�tω2

1

(190)

and

d2∆
dU2 =

2
�tω2

1

. (191)

In this case

ω0 ≡
√
−∂F
∂∆

= ω1 (192)

and

ζ ≡ − 1
2ω0

∂F

∂∆̇
= η +

U

�tω1
(193)

and we note that the damping gets an extra term due to the effect of the drag
element moving air in front of it.

There are only three second derivatives different from zero. They are

∂2F

∂U2 =
∂2F

∂∆̇2
= − ∂2F

∂∆̇∂U
=

2
�t
. (194)

The three functions (166), (167) and (168) become

H0(ω) =
ω2

1

�t
, (195)

H2(ω) =
4ω2

�t

(
η2 − 1

2

)
(196)

and

H4(ω) =
ω4

�tω2
1

. (197)

Thus the relative bias is

δ

∆
=

1
U2

∫ ∞

−∞

(ω2 − ω2
1)

2 + 4η2ω2
1ω

2

(ω2 − ω2
1)2 + 4ζ2ω2

1ω
2
Su(ω)dω (198)

Equation (193) tells us that the total damping coefficient ζ always is greater than
η. The coefficient in front of the spectrum in (198) is therefore always smaller than
one. Again we conclude that the upper limit to the relative bias is the square of
the turbulence intensity.

As we did in the case of the Pitot tube, we can remove the bias due to non-linearity Linearization
of the calibration (H0(ω)) by making an on-line, instantaneous interpretation of
δ̃(t) by the relation

ṽ = ω1

√
�tδ̃ (199)
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and, in this way, evaluate the systematic error 〈v〉 of the ‘apparent’ wind speed.

We now have

¨̃v = F (ṽ, ˙̃v, ũ) (200)

with the somewhat more complicated forcing

F (ṽ, ˙̃v, ũ) = −2ηω1
˙̃v − ω2

1

2

{
ṽ − ũ2

ṽ

}
− 2
�t
ũ ˙̃v −

˙̃v
2

ṽ
+ 2

ṽ ˙̃v
2

�2tω
2
1

. (201)

In this case we have of course

V ≡ V (U) = U. (202)

The frequency ω0 and the damping ζ are the same as those given by (192) and
(193) and the rest of the expressions necessary to determine the systematic error
are

∂2F

∂U2 = − ∂2F

∂U∂V
=
ω2

1

U
, (203)

∂2F

∂V̇ ∂U
= − 2

�t
(204)

and

∂2F

∂V̇ 2
= 4

U

�2tω
2
1

− 2
U
. (205)

We have here designed H0(ω) = 0. The two other weighting functions are

H2(ω) = 2η2ω
2
1ω

2

U
(206)

and

H4(ω) =
ω4

2U
. (207)

With the instant interpretation of δ̃ the relative bias becomes

〈v〉
V

=
1

2U2

∫ ∞

−∞

ω4 + 4η2ω2
1ω

2

(ω2 − ω2
1)2 + 4ζ2ω2

1ω
2
Su(ω)dω. (208)

Comparing (208) with (198) we find that 〈δ〉/∆ > 〈v〉/V when η > 1/
√

2, irre-
spective of the spectrum. When η ≤ 1/

√
2, we can not in general predict which

of the total systematic errors is largest although, a priori, it seems likely that
〈δ〉/∆ > 〈v〉/V for most spectra since the bulk of the velocity variance is likely to
be concentrated at low frequencies.

To be more specific, the Penn State thrust anemometer has η ≈ 0.7, ω1 ≈
210 rad s−1 and �t ≈ 12 m (John Norman, 1986, private communication). There-
fore the contribution U/(ω1�t) to the total damping is negligible in comparison
with η. The implication of ζ = η is that (198) becomes

〈δ〉
∆

=
〈u2〉
U2

. (209)
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According to (133) and (129), the bias 〈δ〉/∆ in (209) is twice that of δv, given by
(134), under unstable conditions. It can consequently quite easily become large,
perhaps more than 10%.

If we assume that the spectrum

Su(ω) =
1
2
α1(εU)2/3|ω|−5/3, (210)

corresponding to (109) in the frequency domain, it is possible to evaluate the bias
(208).

It becomes

〈v〉
V

= α1
(εU/ω1)2/3

2U2

{
h(ζ) + 4η2g(ζ)

}
, (211)

where

g(ζ) =
∫ ∞

0

s1/3

(s2 − 1)2 + 4ζ2s2
ds (212)

and

h(ζ) =
∫ ∞

0

s7/3

(s2 − 1)2 + 4ζ2s2
ds. (213)

These functions can be expressed in terms of well-known standard functions as
(Gradshteyn and Ryzhik, 1980)

g(ζ) =
π√
3

sin
(

1
3

arccos(2ζ2 − 1)
)

2ζ
√

1 − ζ2
(214)

and

h(ζ) =
π√
3

sin
(

2
3

arccos(2ζ2 − 1)
)

2ζ
√

1 − ζ2
. (215)

They are displayed in Figure 11.

We can use the diabatic functions (126) and (128) in subsection 2.7 to evaluate
(211) in unstable stratification by means of (118) and (120):

〈v〉
V

=
1
2
α1κ

2/3χt

(
z

z0
,
z

L

)(
u∗
zω1

)2/3 {
h(ζ) + 4η2g(ζ)

}
, (216)

where

χt

(
z

z0
,
z

L

)
=
{

ln
(
z

z0

)
− ψm

( z
L

)}−4/3

ϕ2/3
ε

( z
L

)
, (217)

displayed in Figure 12.

Under rather unstable situations with L = −10 m, z = 10 m, z0 = 0.1 m and
u∗ = 0.5 m s−1, the Penn State thrust anemometer will have an overspeeding of
about 0.1%. It will be even less for neutral and stable stratification.
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Figure 11. The functions g(ζ) and h(ζ), given by (214) and (215).
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Figure 12. The function χt(z/z0, z/L) for negative values of z/L.

It seems therefore advantageous to perform instantaneous, on-line interpretation
of δ̃ as prescribed by (199). It may reduce the systematic error due to nonlinear
forcing quite considerably. Qualitatively, it is quite obvious why this is the case:
when H0(ω) is zero in (165), the low frequency part of the turbulence is excluded
from contributing to the bias.

The section discussing the thrust anemometer in Kristensen and Lenschow (1988)
is unfortunately haunted by errors. As a consequence of the missing term, pro-
portional to ω4 in [53]‡‡, [76] is in error. Further, there are errors independent of

‡‡References to equations in other texts are indicated by the equation numbers in square
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this mistake in [88], [90] and [94]. The last equation becomes the same function
as (214) if divided by η.

3.3 The CSIRO Liquid Water Probe

King et al. (1978) describe a liquid water probe which uses a constant-temperature
hot-wire element exposed to the airstream to measure in-cloud, total liquid water
concentration w̃ from an aircraft. Bradley and King (1979) show that when the
fluctuations in liquid water concentration are small compared to the mean, the
output signal w̃s, normalized to concentration units, obeys the equation

¨̃ws = ω2
d(1 + rw̃s)(w̃ − w̃s)− 2ζdωd(1 + rw̃s)−1/2 ˙̃ws + r(1 + rw̃s)−1 ˙̃w

2

s,(218)

where ωd and ζd are the natural frequency and damping coefficient, respectively,
for zero liquid water concentration and r the ratio between “wet” and “dry”
cooling power for w̃ = 1 g m−3.

The wire evaporates the droplets it encounters. In clouds, the cooling will in
general be dominated by this evaporating and if the density of water is more than
about w̃ = 1 g m−3, both the natural frequency and the damping coefficient will
be modified, as the dynamic equation (218) shows.

The calibration, the natural frequency and the damping coefficient are

Ws = W, (219)

ω0 = ωd

√
1 + rW (220)

and

ζ =
ζd

1 + rW
. (221)

The error setting H4(ω) = 0 in general in (165) has fortunately no consequence
in this case because ∂2F/∂X2 is zero so that H4(ω) = 0. The linear calibration
implies that H0(ω) is also zero. H2(ω) is different from zero and given by

H2(ω) = −2ω2
dω

2 (222)

and the relative bias becomes

〈ws〉
Ws

= −2
r

W

∫ ∞

−∞

ω2
dω

2

(ω2 − ω2
0)2 + 4ζ2ω2

0ω
2
Sw(ω)dω. (223)

We note that this systematic error is negative.

In order to evaluate the magnitude of the relative bias, we (Kristensen and Len-
schow, 1988) chose data from a flight with the NCAR Electra aircraft in marine
stratocumulus off the California coast. The time series we selected was obtained
from a flight leg at the top of the stratocumulus cloud layer, where the fluctuation
level of the liquid water concentration is higher than within the cloud layer.

We found that the spectrum of liquid water concentration was proportional to the
frequency to the minus one power, and consistent with the spectrum determined
by NCAR’s FSSP probe (Knollenberg, 1981).
parentheses.
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It can be written in the form

Sw(ω) = C〈w2〉/|ω|, (224)

where C is a dimensionless constant.

Assuming that the spectral shape does not change with the mean concentration
W and that

√
〈w2〉 is always proportional to W , we get the following result

〈ws〉
Ws

= −2
C〈w2〉
W 2

rW

1 + rW
I

(
ζd

1 + rW

)
. (225)

The function I(ζ) is

I(ζ) =
∫ ∞

0

ds

(1 − s)2 + 4ζ2s
(226)

which, after simple manipulations can be expressed in terms of well-known func-
tions as

I(ζ) =
1
2ζ




[
π − arctan

(
2ζ
√

1 − ζ2

1 − 2ζ2

)]
/
√

1 − ζ2, 0 < ζ < 1/
√

2

arctan
(

2ζ
√

1 − ζ2

2ζ2 − 1

)
/
√

1 − ζ2, 1/
√

2 ≤ ζ < 1

ln
(
2ζ2 − 1 + 2ζ

√
ζ2 − 1

)
/
√
ζ2 − 1, 1 ≤ ζ <∞

.(227)

Figure 13 shows this function. For very small values of ζ it becomes asymptoti-
cally equal to π/(2ζ). This was unfortunately not what we showed in Figure 4 in
Kristensen and Lenschow (1988); we made the mistake of letting the second line
in (227) cover the entire interval from 0 < ζ ≤ 1, although it is clear that the
integral (226) is divergent when ζ = 0.

The time series analysis showed that the mean concentration was W ≈ 0.2 g m−3

and C〈w2〉 ≈ 2.5 × 10−3 g2 m−6. According to Warren D. King (1986, private
communication) and consistent with Bradley and King (1979), r ≈ 1 g−1 m3 and
ζd = 2. Inserting these values in (225) the relative bias can be determined as
function of the mean concentration W . The result is shown in Figure (14).

We see that when the mean concentration is 2 g m−3, which is a typical value in
a cloud, the relative bias due to the nonlinear forcing is about −10%.

4 Cup and Vane

The almost linear calibration of the cup anemometer, its simple filtering character-
istics and its simplicity in operation makes it well suited for routine measurements
in meteorological services such as data recording for weather forecasting and air-
port briefings of pilots.

Combined with a wind vane, which incidentally is also omnidirectional, it can
very easily provide information about wind speed and direction, wind direction
variance 〈δφ2〉, and with a little more effort wind speed variance and consequently
also, as we shall see, gust information.
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Figure 14. The relative bias of the CSIRO Liquid Water Probe as function of the
mean concentration.

The common wind vane, which has been discussed in some detail by Wyngaard Wind vane
(1981), is well described as a second-order linear filter. Let α(t) ≈ v/U be the in-
stantaneous wind direction in a coordinate system where the mean wind direction
defines the x-axis [see (5)] and φ the measured wind direction. Then

φ̈+ 2ζω0φ̇+ ω2
0φ = ω2

0α(t), (228)

where ω0 and ζ are the natural frequency and the damping coefficient, respectively.

We have already in section 3 shown how such a system reacts to a sudden change
in the input [see (156)] and how in frequency domain the amplitude and the phase

Risø–R–615(EN) 55



of the output is related to the input.

As shown by Wyngaard (1981), the natural frequency ω0 is proportional to the Vane distance constant
mean wind speed U , whereas the damping coefficient is independent of U . We can
therefore introduce a distance constant �v by

�v =
U

ω0
(229)

and rewrite (228) as a differential equation in the coordinate x by using Taylor’s
hypothesis:

d2φ

dx2 + 2
ζ

�v

dφ

dx
+
φ

�2v
=

α

�2v
. (230)

The transfer function and the phase delay now become functions of wave number
k rather than frequency so that instead of (159) and (163) we have

Kv(k) =
1

(1 − k2�2v)2 + 4ζ2k2�2v
(231)

and

βv(k) = arctan
(

2ζ
1 − k2�2v

)
. (232)

We see that the vane, like the cup anemometer, is a filter which operates in space Vane Butterworth filter
along the mean wind direction. Again, in order for this filter to have the maximum
flatness it should have a damping coefficient equal to 1/

√
2, i.e. be a Butterworth

filter (of second order). Larsen and Busch (1974) have shown how in practice it
is possible to obtain this value over a large range of wind speeds by choosing a
proper length of the vane arm.

It is most advantageous to match the distance constant �v to that of the cup Matching of distance
constantsanemometer �0. In that way simultaneous outputs of instantaneous values will

‘seen’ through filters remembering approximately the same past. This could be of
importance if we for example were interested in measuring the covariance 〈uv〉; as
we have demonstrated Kristensen and Lenschow (1988) in the case of two first-
order filters, the measured covariance between two output gets contributions not
only from the cospectrum (the ‘in-phase’ spectrum) but also from the quadrature-
spectrum (the ‘out-of-phase’ spectrum) when there is a mismatch between the
filter characteristics.

If we are only interested in the mean-wind direction and the mean velocity, the Cup anemometer as
triggermost practical way to measure these is to use the anemometer only as a trigger

to read off φ. For example, we could let our measuring system read off φ once for
every resolution, corresponding the wind way 2π� in the direction φ, i.e. the length
of the column of air which has blown through the anemometer in the meantime. If
we do not want to use such a small temporal resolution, we could let every second
or tenth resolution trigger the read-off.

We store all these direction measurements during the averaging period T , e.g. Mean wind vector
10 minutes. Let φn be measurement number n of the total number N . Then the
number pair




U

V


 =

2π�
T




N∑
n=1

cos(φn)

N∑
n=1

sin(φn)




(233)
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is, by definition, the horizontal mean velocity vector, because it corresponds to
the displacement of an air parcel in the period T (if the windfield were only a
function of time and not space). The mean wind speed becomes

√
U2 + V 2 and

the mean wind direction can be determined as Mean wind direction

〈φ〉 = arctan
(
〈sin(φ)〉
〈cos(φ)〉

)
, (234)

where




〈cos(φ)〉

〈sin(φ)〉


 =

1
N




N∑
n=1

cos(φn)

N∑
n=1

sin(φn)



. (235)

As a bonus, the wind direction variance can be obtained by expanding 〈cos(φ)〉2 Direction variance
and 〈sin(φ)〉2 in the deviation δφ from 〈φ〉. A simple analysis shows

〈δφ2〉 = 1 − 〈cos(φ)〉2 − 〈sin(φ)〉2 + terms of order 〈δφ2〉2 and higher. (236)

In other words, due to the linearity of the cup anemometer calibration it is possible
in a simple way to obtain three mean quantities, wind speed, wind direction and
wind-direction variance—quantities important in e.g. dispersion measurements.

The wind speed, averaged over the n’the revolution of duration ∆tn, is 2π�/∆tn. Wind speed variance
If ∆tn is recorded together with φn it is possible also to compute the variance of
the wind speed 〈u2〉.

The reason we avoid v-bias is that now only the high wave-number part of the ṽ v-bias reduction
is ‘experienced’ by the anemometer. Pasquill and Smith (1983) have a straight-
forward derivation of an expression for the variance which is left after a temporal
average of duration T has been removed [see also Kaimal et al. (1989)]. Their
result applies to our case; we just have to think in terms of a spatial line average
of length 2π�, corresponding to one revolution of the rotor.

After removal of the low wave-number variance the residual v variance is

〈v2〉 =
∫ ∞

−∞
{1 − sinc2(πk�)}Fv(k)dk, (237)

where we have used the notation

sinc(ξ) =
sin(ξ)
ξ

(238)

and Fv(k) is the spectrum of ṽ.

The situation is described in Figure 15. The integrand is the product of the func-
tions Fv(k) and the function 1 − sinc2(k�/2). The reason they intersect way out
in the inertial subrange is that � is much smaller than the scale Lv of the lateral
velocity component; as pointed out this length scale is of the order zi, the depth
of the boundary layer.

In the inertial subrange the spectrum Fv(k) is given by (Lumley and Panofsky,
1964)

Fv(k) =
1
2

{
Fu(k) − k

dFu

dk

}
=

2
3
α1ε

2/3|k|−5/3 (239)
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Figure 15. The spectrum Fv(k) (thick line) of the lateral wind component ṽ and
the function 1 − sinc2(πk�) (thin line).

and the effective v-bias now becomes

δv =
2
3
α1
ε2/3

2U2

∫ ∞

−∞
{1 − sinc2(πk�)}|k|−5/3dk

=
2
3
α1

(πε�)2/3

U2

∫ ∞

0

(1 − sinc2(ξ))ξ−5/3dξ

=
4π

3
√

3Γ(11/3)
α1

(2πε�)2/3

U2
. (240)

Applying the diabatic profile functions (118) and (120) we get

δv =
4π

3
√

3Γ(11/3)
α1κ

4/3χu

(
z

z0
,
z

L

)(
2π�
z

)2/3

≈ 0.34χu

(
z

z0
,
z

L

)(
�

z

)2/3

, (241)

an expression with very close resemblance to the u-bias in its dependence on the
height z. It is not the distance constant �0 which enters to the power 2/3, but
the calibration distance. This is typically 0.2 m so if L = −10 m, z = 10 m and
z0 = 0.1 m we get δv<∼1%. It can hardly be any larger so this is quite acceptable.

5 Gust Determination

In our article ‘In Search of a Gust Definition’ (Kristensen et al., 1991) we have
tried to give a practical definition of a gust. Traditionally a gust is defined as the
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difference between the extreme value and the average value of the wind speed in a
given time of interval T (Beljaars, 1987). This is in itself a reasonable definition,
but the way it is determined is always from the preceeding period and thus contains
very little predictive power; the gust in the following period will most certainly
be different and it is impossible to tell, just from a gust determination from one
period, with what probability the largest excursion in the following period will
exceed this gust.

We start by pointing out that there are two different approaches in studying
extreme excursions, which in our terminology are: the ‘Rice Approach’ (Rice,
1944 and 1945) and the ‘Gumbel Approach’ (Gumbel, 1958).

In both cases we imagine that we are dealing with an infinite ensemble of records
of duration T of the wind speed with the ensemble mean subtracted.

In the Rice approach we ask for the average frequency ηU with which the level U Rice approach
is exceeded. We determine that by counting, in each realization, the number of
excursions of ũ beyond U . If this is Ni(U) in realization number i then the average
number of excursions is

N(U) = lim
M→∞

1
M

M∑
i=1

Ni(U). (242)

The rate of excursions becomes

η(U) =
N(U)
T

. (243)

If we assume that the individual excursions are statistically independent in each
individual realization, then the excursions will be Poisson distributed, i.e. the
probability for n excursions will be

PU [n] =
e−N(U)

n!
Nn(U). (244)

In particular, the probability for no excursions beyond U (n = 0) becomes

PU [0] = e−N(U). (245)

This number is also the fraction of realizations in which the level U is not exceeded.

In the Gumbel approach we only record the maximum value Ui of ũ(t) in each Gumbel approach
of the M realizations. We can then determine the probability P (< U) that the
maximum value does not exceed the level U by introducing the index function

Bi(U) =




1 for Ui ≤ U

0 for Ui > U
(246)

for each value of U to obtain

P (< U) = lim
M→∞

1
M

M∑
i=1

Bi(U). (247)

Risø–R–615(EN) 59



Often the left-hand side of P (< U) is approximated by the first of the so-called
three asymptotes (Gumbel, 1958):

P (< U) = exp
(
− exp

(
−C U − [U ]

〈U〉 − [U ]

))
, (248)

where

C = 0.5772156649 . . . (249)

is the Euler constant, 〈U〉 the mean of the maxima and [U ] the position of the
maximum of the probability density function corresponding to (248):

p(U) =
C

〈U〉 − [U ]
exp
(
−C U − [U ]

〈U〉 − [U ]

)
exp
(
− exp

(
−C U − [U ]

〈U〉 − [U ]

))
. (250)

The Gumbel probability density function is always skew; if 〈U〉 = [U ] it degenerates
into a Dirac delta function.

We saw that the probability that the level U is not exceeded is given by (245). If Rice and Gumbel
approaches are equivalentthe level is U is not exceeded the maximum value will not exceed this level either.

In the Gumbel approach we determined the probability (248) that the maximum
value of ũ(t) does not exceed U . If the maximum value does not exceed U , the
time series cannot exceed U in its entire duration.

We thus conclude

P (< U) = PU [0] (251)

or, identifying (245) and the approximation (248),

N(U) = exp
(
−C U − [U ]

〈U〉 − [U ]

)
. (252)

We see that Rice approach and the Gumbel approach are equivalent. This was also
pointed out by Davenport (1964). If we know the average frequency of excursions
beyond any level U we can determine the probability function for the maximum
values and, if this function is known then the average frequency of excursions
beyond any level is known.

Here we have, in order to be specific, chosen the asymptotic extreme-probability
function (248). This is by no means necessary to obtain the general conclusion
(251). However, (248) is widely used because it is simple and believed to be rea-
sonably accurate for most applications.
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Further, it leads to a natural definition of a gust: Gust definition

The gust is the wind-speed deviation from the mean
which, on average, is exceeded once during the reference
period T .

Since (252) gives us the average number of excursions beyond U , we can determine
the gust by setting the left-hand side of (252) equal to one. We conclude that the
gust in our approximation becomes equal to the most probable value, the mode
[U ], of the Gumbel probability density function (250). With this definition we can,
with the aid of (244), assign probabilities as follows: Gust probabilities

No excursion: P[U ][0] = e−1 ∼ 37%

At least one excursion: 1 − e−1 ∼ 63%

The Rice-theory (Rice, 1944 and 1945) and its applications have been discussed
in detail by Panofsky and Dutton (1984) under the name exceedance statistics.

The joint probability density P (u, u̇) of the fluctuating part of the velocity u(t) Excursion rate
and its time derivative u̇ contains the information about the rate of excursions ηU .
If u(t) is measured continuously in time this rate becomes for a stationary time
series

ηU =
∫ ∞

0

u̇P (U − U, u̇)du̇. (253)

In other words, the number of times ũ(t) exceeds U per unit time is equal to the
average of the positive values of the time derivative u̇ or, as the derivation of (253)
by e.g., Panofsky and Dutton (1984) shows, to the average rate of up-crossings of
the level U .

In the period T , ũ(t) will, on average, be larger than U in the total amount of
time

ΘU = T

∫ ∞

U−U

du

∫ ∞

−∞
P (u, u̇)du̇ (254)

and since the average number of times U is exceeded in the same period of time Excursion duration
is ηUT , the average duration of one excursion beyond U can be estimated as

ϑU ≈ ΘU
ηUT

=

∫ ∞

U
du

∫ ∞

−∞
P (u, u̇)du̇∫ ∞

0

u̇P (U − U, u̇)du̇
. (255)

The joint probability density contains, as we see, all the important information Joint-Gaussian statistics
about the gust. In Kristensen et al. (1991), we simply assumed that u and u̇ have
a joint-Gaussian probability density

P (u, u̇) =
1

2π
√
〈u2〉

√
〈u̇2〉

exp
(
− u2

2〈u2〉 −
u̇2

2〈u̇2〉

)
, (256)
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and obtained the following simple expressions for ηU and ϑU

ηU =
1
2π

√
〈u̇2〉√
〈u2〉

exp
(
− (U − U)2

2〈u2〉

)
(257)

and

ϑU = π

√
〈u2〉√
〈u̇2〉

exp
(

(U − U)2

2〈u2〉

)
erfc

(
U − U√
2
√
〈u2〉

)
, (258)

where

erfc(x) =
2√
π

∫ ∞

x

e−t2dt (259)

is the complementary error function. In the limit when the excursion is very large,
i.e. when U − U �

√
〈u2〉, we get the simple result

ϑU ≈
√

2π

√
〈u2〉√
〈u̇2〉

√
〈u2〉

U − U
, (260)

which has the straightforward interpretation that the average duration of an ex-
cursion is inversely proportional to the deviation from the mean.

With the assumption (256) the whole problem reduces to determining the ratio
between the variances 〈u2〉 and 〈u̇2〉 of u and u̇. We must remember, however, that Cup-anemometer gust
the wind speed is observed through the filter of the cup anemometer so the gust
should really be determined in terms of s, i.e. we must determine the variances
〈s2〉 and 〈ṡ2〉.

We consider the cup anemometer a first-order, linear filter, described by the equa-
tion

ṡ+
s

τ0
=

1
τ0

u

�
. (261)

Equation (261) is the same as (28), with the assumption that the cup anemometer
has up-down symmetry, i.e. µ1 = 0.

Multiplying (261) by s and τ0 and averaging, we get

〈s2〉 =
1
�
〈su〉 =

1
�2

∫ ∞

−∞

Su(ω)
1 + ω2τ2

0

dω, (262)

where we have used (73) and the fact that 〈sṡ〉 = 0.

Multiplying (261) by ṡ and averaging, we obtain 〈ṡ2〉 as follows

〈ṡ2〉 =
〈ṡu〉
�τ0

. (263)

Employing (261) once more to eliminate ṡ on the right-hand side, provides the
result
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〈ṡ2〉 =
1
�τ0

{〈
u

�τ0
u

〉
−
〈
s

τ0
u

〉}

=
1

�2τ2
0

∫ ∞

−∞
Su(ω)dω − 1

�2τ2
0

∫ ∞

−∞

Su(ω)
1 + ω2τ2

0

dω

=
1
�2

∫ ∞

−∞

ω2Su(ω)
1 + ω2τ2

0

dω. (264)

We see that the variance of the time derivative s is proportional to the variance
of the velocity after first-order high-pass filtering with the time constant τ0.

In Kristensen et al. (1991) we generalized these results by including another
low-pass filter, a simple running-means filter, applied to the output of the cup
anemometer. The reason for this is that it is common practice in airports to de-
fine the gust as extreme excursions of the wind speed as seen through a filter
with a fixed averaging time τrm, which is usually about 3 s. The typical value
of τ0 = �0/U is 0.1 to 0.4 s and the effect of the cup anemometer low-pass filter
is hardly felt after this heavy-handed running-means filtering. In the sense that
turbulence is less of a temporal than a spatial structure through which we can
consider ourselves to be probing with the mean wind velocity U in the mean-
wind direction, it would give a better representation of the turbulence structure
if temporal averaging is avoided entirely, so that the turbulence we ‘see’ through
the cup-anemometer signal becomes independent of U and is just a line averaging
along the mean wind direction. Here we will therefore just consider the signal s
without auxiliary filtering and apply Taylor’s hypothesis to reformulate (263) and
(264) with the result

〈s2〉 =
1
�2

∫ ∞

−∞

Fu(k)
1 + k2�20

dk (265)

and

〈ṡ2〉 =
U2

�2

∫ ∞

−∞

k2Fu(k)
1 + k2�20

dk. (266)

When we derived the equation for the u-bias in subsection 2.7 we assumed that
distance constant was much smaller than the turbulence length scale of ũ, i.e.
�0 � Lu and were able to derive a quite accurate analytical expression for the u-
bias. The reason was that only that part of the spectrum Fu(k) for which |k|>∼1/�0
contributes to the u-bias. Since (266) shows that exactly the same integral enters
in the determination of 〈ṡ2〉, this quantity becomes to the same accuracy

〈ṡ2〉 =
π√
3
α1(ε�0)2/3 U

2

�2�20
(267)

It it is much more difficult to evaluate (265) because contributions from arbitrarily
large eddies enter the integral. In Kristensen et al. (1991) we neglected this problem
by only discussing the case of neutral stratification and assuming that the low-pass
filtering (in wave-number domain) takes place so far out in the inertial subrange
that it does not cause any loss of variance. This implied that we could use the
simple result

〈s2〉 = 4.77
u2
∗
�2
, (268)
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consistent with the spectrum for ũ under neutral conditions in the surface layer
by Kaimal et al. (1972).

Under the same conditions

ε =
u3∗
κz

(269)

and (267) becomes

〈ṡ2〉 =
π√
3
α1κ

−2/3 U
2

�2�20

(
�0
z

)2/3

u2
∗ ≈ 1.87

U2

�2�20

(
�0
z

)2/3

u2
∗. (270)

The ratio between
√
〈u̇2〉 and

√
〈u2〉, entering (257) and (258), should really be√

〈ṡ2〉/〈s2〉 and this ratio becomes

√
〈ṡ2〉√
〈s2〉

= 0.626
U

�0

(
�0
z

)1/3

. (271)

Equation (268) is an overestimation because the observation time T may not be
large compared to the integral time scale Tu. We can use the simple spectral
model (A.2) in Appendix A to estimate this overestimation. We are not in this
case interested in the dissipation range at all so we simplify (A.2) accordingly:

Fu(k) =
1
2
α1ε

2/3




L′
u
5/3 for 0 ≤ |k| ≤ L′

u
−1

k−5/3 for L′
u
−1 ≤ |k| <∞

. (272)

The length scale L′
u is not quite equal to the real length scale , determined by

(82) and Lu = UTu. In Appendix A we show

L′
u =

5
π
Lu ≈ 8z. (273)

With the spectrum (272) we get

〈�2s2〉 =
∫ ∞

−∞

{
1 − sinc2

(
ωT

2

)}
Su(ω)dω

=
∫ ∞

−∞

{
1 − sinc2

(
kUT

2

)}
Fu(k)dk

≈ 〈u2〉 − α1

2
(εL′

u)2/3 L′
u

UT

∫ ∞

−∞
sinc2(ξ)dξ

= 〈u2〉 − πα1(εL′
u)2/3 L′

u

UT
(274)

Using (269) for ε and

〈u2〉 = 4.77u2
∗, (275)

corresponding to neutral stratification, (268) must be replaced by

〈s2〉 ≈ 4.77
u2
∗
�2

{
1 − 22

z

UT

}
. (276)
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If z = 10 m and UT = 3000 m, corresponding to a typical length of a runway
in the airport, the value of (268) is about 7% too large. This means that (271)
will be underestimated by about 3.5%. On the other hand, if U = 10 m s−1 and
T = 180 s as convention sometimes dictates, then the corresponding numbers are
12% and 6%, respectively. These numbers may not be insignificant, so in order
to investigate this problem any further it is necessary to use a more realistic and
detailed spectral expression than (272).

Here we will just point out that we used the result (271) with success (Kristensen Experimental verification
et al., 1991) in a case where the cup-anemometer signal was subjected to a run-
ning averaging over the time τrm. We found the gust [U ] well predicted by the
dimensionless expression

µ ≡ [U ] − U

〈u2〉1/2
=

√√√√2 ln

(
0.1483

{
Uτrm

z

}1/3
T

τrm

)
, (277)

which shows that the gust, not surprisingly, is proportional to the root-mean-
square of u.

We used a stationary time series of ũ of total duration 20 hours with a mean
U ≈ 12 m s−1. Varying T from 120 s to 1800 s and using τrm = 1, 2 and 3 s, we
found that the two ways of defining a gust—the ‘Rice Approach’ and the ‘Gumbel
Approach’—agreed well within 4% and that the prediction (277) in all cases agreed
with these gusts within 12%, but that the agreement was typically within 8%.

The reason that the cup-anemometer’s own low pass filter does not affect (277),
i.e. that �0 does not appear in the equation, is that �0/U<∼0.2 s� τrm, so that the
low-pass filtering is completely dominated by the running-means filter.

If there had been no filtering of the raw cup-anemometer signal, the gust expression
would have been

µ =

√√√√2 ln

(
0.0997

{
�0
z

}1/3
UT

�0

)
. (278)

We believe that a gust prediction based on an equation like (278), possibly mod-
ified to account for a non-Gaussian probability density for u, is superior to a
prediction based on the largest excursion from the previous period. Our method
of prediction takes a lot more information into account than just the largest excur-
sion. Another advantage is that it eliminates the effect of discrete sampling—the
fact that statistically we are certain to miss some of the largest excursions. The
effect of the discrete sampling is that in the mean the gust will be underestimated
(Beljaars, 1987). The variance, on the other hand, is not systematically affected
by the discrete sampling.

Let us think about this for a moment: why is it that 〈u2〉 is not affected by Discrete sampling
the discrete sampling and yet the statistics of the extremes is? What is different
between discrete and continuous sampling? The answer is that ũ has the possibility
to cross any given level U unnoticed between samplings, which are separated in
time by the interval ∆t. This will reduce the apparent number of excursions and
also the gust obtained by recording the largest value in each reference period. We
expect this effect to be an increasing function of the ratio between ∆t = 2π�/U
and the time constant �0/U (or τrm).

It is possible to estimate how much the gust is reduced by discrete sampling as Reduction of gust rate and
gust magnitude
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compared to continuous sampling as is shown in Appendix B. The apparent gust
rate η′U is shown by a heuristic proof to be smaller than ηU by the factor

η′U
ηU

=

√
1 − 1.70

(
�

�0

)2/3

, (279)

shown in Figure 16. The apparent dimensionless gust µ′ becomes

µ′ ≈ µ− 0.85
µ

(
�

�0

)2/3

. (280)
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Figure 16. The gust reduction factor (279) due to the discrete sampling of the cup
anemometer.

The Risø-70 cup anemometer has � = 0.2 m and �0 ≈ 1.7 m which means that if we
measured gust with this instrument by detecting the largest value in each reference
period we would estimate an excursion rate which would be systematically about
16% too small. A typical value of µ is 2.5 and we see that the gust correspondingly
will be reduced by less than 0.5%.

The two equations (279) and (280) can of course also be formulated in the time
domain for a time series subjected to a first-order low-pass filtering with a time
constant τ0 and sampled equidistantly in time with the separation ∆t. In this case
�/�0 must be replaced by ∆t/(2πτ0). They confirm our intuition that this ratio
must be small compared to one to obtain trustworthy values of ηU and µ; it means
that the signal must be ‘calmed down’ in order that it should not cross the level
U unnoticed.

6 Conclusions

The nonlinear dynamics of sensors for atmospheric measurements has been the
main theme in this work. Many sensors have nonlinear dynamics, but historically

66 Risø–R–615(EN)



the cup anemometer has attracted considerable attention because of the so-called
overspeeding. Here, this instrument has therefore been given most attention.

In the discussion of nonlinear sensor dynamics I have used the adjectives lin-
ear/nonlinear and first-order/second-order as qualifiers of different concepts. Per-
haps it would be useful at this point to repeat the most important definitions I
have used.

Let us consider a sensor or a system with one input x̃ and one response ỹ. We
assume that the connection between x̃ and ỹ is determined by an ordinary dif-
ferential equation in ỹ. The order of this differential equation is the order of the
system. A general system of order n obeys the equation

dnỹ

dtn
= F

(
ỹ,
dy

dt
, . . . ,

dn−1ỹ

dtn−1
, x̃

)
. (281)

Here the function F is the forcing, which can be linear or nonlinear in its n
variables. If just one of the n(n + 1)/2 second derivatives of F is different from
zero, the system is nonlinear.

A nonlinear system may or may not have a linear, steady-state calibration. The
calibration is obtained by keeping the input x̃ = X constant until the response
ỹ = Y has become constant and all its derivatives are zero. The condition

F (Y, 0, . . . , X) = 0 (282)

implies the steady-state relation

Y = Y (X) (283)

between X and Y . This relation is the calibration. If the second derivative of Y (X)
with respect to X is zero for all values of X , the system has a linear calibration.
If the system is linear, (282) is a linear equation in X and Y and the calibration
(283) is then also linear. However, we cannot a priori say that the calibration is
nonlinear if the system is nonlinear.

The differential equation (281) will often be nonlinear and so complicated that it
is not possible to obtain an exact solution. We therefore try to extract information
about the system by applying a perturbation technique. In the neighborhood of the
calibration point (ỹ, x̃) = (Y (X), X), we express the function F as a power series
in all its n variables. A first-order perturbation equation includes only variables up
to the power one. Similarly, a second-order perturbation equation includes terms
of no higher order than two. We do not go beyond second order.

With all these concepts in place, we note that a cup anemometer, exposed only
to a horizontal wind component of constant direction, is a nonlinear, first-order
system with a linear calibration.

Using first- and second-order perturbation theory on the equation of motion of
the cup anemometer, with the total horizontal and the vertical wind components
as input, it is possible to determine the systematic error in the measured mean
value due to turbulent fluctuations. This systematic error, or overspeeding, has
been considered a serious drawback, which has recently become of importance,
because climatological cup anemometer records of mean winds are used to assess
the performance of modern wind turbines. The available wind energy is roughly
proportional to the cube of the wind speed and thus a five percent overestimation
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of the mean wind speed may lead to an expectation of an wind energy production
which is perhaps 15 percent too high.

I have discussed four types of overspeeding: 1) the u-bias, which is caused by
the response asymmetry to wind gusts and lulls and which is what is usually
considered the ‘real’ overspeeding, 2) the v-bias, which is really the interpretation
error one is guilty of, if one equates the mean of the horizontal wind speed and the
magnitude of the mean horizontal wind velocity vector, 3) the w-bias caused by a
nonideal angular response (µ1 �= 0 or µ2 �= 0) and often discussed in the literature
together with the u-bias (MacCready, 1966, Kaganov and Yaglom, 1976, Busch
and Kristensen, 1976, Wyngaard, 1981, Coppin,, 1982) and finally, 4) the stress-
bias, which is caused by the stress correlation 〈uw〉 in connection with anemometer
up-down asymmetry (µ1 �= 0) and which, to my knowledge, has not been discussed
before.

The simplest of the four biases are the v-bias and the w-bias. Neglecting the
cup-anemometer offset speed U0 and µ1, they are 〈v2〉/(2U2) and µ2〈w2〉/(2U2),
respectively. In other words, they are both proportional to the square of the rel-
ative turbulence intensities of the respective velocity components. The w-bias is
seldom very large in the atmospheric surface layer since the proximity of the im-
penetrable boundary limits the horizontal scale of the turbulence of the vertical
velocity fluctuations. The investigation here shows that it is probably always less
than about one percent. There is no such geometrical limit to the scale of the
lateral velocity fluctuations and, particularly in very unstable and very stable
stratifications, the v-bias can be quite large—more than 10% according to e.g.,
Smith and Abbott (1961).

The u-bias and the stress-bias are similar in the sense that only the high wave-
number turbulence contributes. So even if the variance 〈u2〉 like 〈v2〉 can be large,
the cup anemometer can faithfully follow the fluctuations of the longitudinal ve-
locity component with wavelengths larger than the cup anemometer distance con-
stant �0. The u-bias is approximately equal to the square of the relative turbulence
intensity pertaining to wave numbers larger than 1/�0. The stress-bias is equal to
µ1 times the covariance of u and w from wave numbers larger than 1/�0 divided
by the mean wind speed. The u bias is seldom more than a few percent and,
depending on the value of the asymmetry coefficient µ1, the stress-coefficient will
usually be about 0.1% or less.

From these considerations it is clear to me that cup-anemometer overspeeding in
the traditional sense, i.e. u-bias, together with the w-bias and the stress-bias can
be neglected in most applications.

In these considerations I have presented the results in terms of a very simple
equation for the forcing of the cup rotor. I assume that it is a second-order poly-
nomial in the input and the output. With the observation that it can only have
one positive root in order for the calibration to be unambiguous and that this root
cannot be a double root if the time scale of the first-order response is finite, this
polynomial can be expressed in terms of three positive length scales and the two
dimensionless parameters µ1 and µ2, characterizing the response to the vertical
wind component. The three length scales are the calibration length �, the distance
constant �0 and a length Λ, which determines whether or not the second-order
mixed term 〈su〉 reduces or enhances the u-bias. If Λ is smaller than � the covari-
ance between 〈su〉 will counteract the overspeeding and enhance it if Λ is larger
than �. Unfortunately, I have not been able to provide a better physical inter-
pretation of the length scale Λ. The model, which is in good agreement with the
investigations by Wyngaard et al. (1974) and in fair agreement with the findings of
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Coppin (1982), provides nice looking results in the form of equations for the four
biases. However, the main result that ‘overspeeding is overrated’ is independent
of this model. Only the assumption that the forcing is a second-order polynomial
is necessary to maintain that the distance constant is an instrument constant, i.e.
independent of the wind speed.

Although the cup anemometer is a very prominent sensor in sofar as nonlinear
forcing is concerned, there are many other sensors who have the same property and
consequently will give systematically biased means. Restating the results obtained
by us (Kristensen and Lenschow, 1988) and correcting the errors in this work, I
have here discussed nonlinear forcing of first and second order.

The dynamic equation for the Pitot tube, like that for the cup anemometer, can be
described by a first order, ordinary differential equation. The Pitot tube, therefore,
is a first-order system. In contrast to the cup anemometer, it is characterized by
a time constant rather than a distance constant.

As second-order systems we chose as examples the thrust anemometer and the
CSIRO liquid water probe.

The first of these and the Pitot tube we have discussed in terms of two modes
of operation: 1) detection and recording of the ‘raw’ output, the actual displace-
ment of the thrust element and the pressure difference from the Pitot tube, and
2) on-line interpretation of the raw output as a wind speed by means of the static
calibration, a process which is also called linearization. It turns out that the first
will in general give higher bias of the mean (overspeeding) than the second. This
can be understood immediately: the nonlinear calibration will cause the low fre-
quency part of the variance to contribute in the first mode of operation whereas
in the second mode of operation this contribution will be eliminated by high-pass
filtering. When a sensor has a nonlinear calibration it is advisable to linearize the
output before any other processing, such as averaging, is performed. This seems a
trivial and obvious result which we could have derived by means of simple argu-
ments. However, there is a continuation: we have found that even if we linearize
there is a bias from the high-frequency part of the turbulence if the instrument
has nonlinear forcing. In the case of the thrust anemometer the biases from the
two modes of operation can be quite different: without linearization the bias on
the mean can be as much as perhaps 10%, whereas linearization reduces the bias
to less than 1%.

The CSIRO liquid water probe measures the mean with a negative bias because
of nonlinear forcing. The signal is linearized, but it turns out from an analysis of
aircraft data that the bias of the mean can be −10% if the amount of water is
about 2 g m−3, a value not uncommon in clouds. However, this result is somewhat
speculative because it is assumed that the variance of the water concentration is
proportional to the square of the mean concentration. More data analysis is needed
to more correctly estimate the bias.

In sections 4 and 5 we return to cup-anemometer operation and application. I show
that it is possible to reduce the v-bias by operating the cup anemometer together
with a wind vane in a particular way, namely to let the cup anemometer pulse from
each revolution trigger a recording of the wind direction. In this way the v-bias
will also be small, equal to one-half the square of the turbulence intensity from
wave numbers larger than 2π�, where � is the calibration distance. Usually this
reduced bias will be no larger than about 1%. In this mode of operation the output
will, after the averaging, provide the two components of the horizontal mean wind
velocity and, as a by-product, also the lateral variance from the averaging period.
It is a condition for this scheme to work that the cup-anemometer calibration is
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linear and that the offset speed U0 can be neglected.

If we also record the length of time of each revolution of the cup rotor we can
also calculate the variance 〈u2〉 of the longitudinal velocity component. As we
show in section 5, it is possible to apply this variance to obtain a prediction of
the gust, which is defined as ‘the wind-speed deviation from the mean which,
on average, is exceeded once in the reference (averaging) period’ (Kristensen et
al., 1991). We point out that this definition of the gust, under the assumption
that the individual large excursions from the mean can be considered statistically
independent, is identical to the most probable value of the largest excursion in
a reference period. Traditionally the gust, e.g. in airports, is predicted by letting
the largest excursion from the previous period predict the largest value in the
following. By using the variance rather than the largest value for this prediction,
we obtain a statistically more reliable value and, with our definition it is also
possible to actually state the probability that the gust is exceeded at least once,
exactly once, twice, any number of times or not at all. For example, the probability
that the predicted gust value is not exceeded is 37%.
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Dansk Sammendrag

Vi har diskuteret ikke-lineær dynamik for målesinstrumenter, som anvendes i
meteorologi. Der er mange instrumenter, som adlyder ikke-lineære dynamiske
ligninger, men historisk har kopanemometret tiltrukket sig stor interesse p̊a grund
af den s̊akaldte “overspeeding”, som er en systematisk fejl p̊a den målte mid-
delvindhastighed, der skyldes turbulente variationer af hastighedskomponenten i
middelvindretningen. I denne rapport er det derfor ogs̊a kopanemometret, der har
f̊aet den mest detaljerede behandling.

Dynamikken bliver beskrevet ved hjælp af en differentialligning i tiden, med in-
put og output som afhængige variable. I tilfælde af kopanemometret er der to
input, nemlig den horisontale og den vertikale projektion af vindhastighedsvek-
toren, som kaldes henholdsvis h̃ og w̃, og et output, koprotorens vinkelhastighed,
s̃. Bevægelsesligningen er her af første orden og af formen

˙̃s = F (s̃, h̃, w̃), (284)

hvor funktionen F er kraftmomentet p̊a koprotoren divideret med dennes inerti-
moment.

Ved hjælp af første-og anden ordens perturbationsregning p̊a (284) finder vi, at der
p̊a den målte middelværdi er fire typer af systematiske fejl, som skyldes anemome-
trets ikke-lineære reaktion p̊a turbulente fluktuationer. De fire fejl benævnes her:
“u-bias”, som er identisk med omtalte “overspeeding”, “v-bias” og “w-bias”, som
skyldes fluktuationer i henholdsvis den laterale vindhastighedskomponent, d.v.s.
vindretningen, og den vertikale vindhastighedskomponent, samt endelig “stress-
bias”, der optræder p̊a grund af korrelationen mellem den longitudinale og den
vertikale vindhastighedskomponent. Disse fire systematiske fejl kan udtrykkes ved
hjælp af effektspektrene af de tre vindhastighedskomponenter, ũ, ṽ og w̃, krydsspek-
tret mellem ũ and w̃ samt egenskaberne ved funktionen F . Nærværende analyse
viser, at u-bias og stress-bias begge er proportionale med den højfrekvente del af
henholdsvis effektspektret af u og realdelen af krydspektret mellem u og w, mens
v-bias og w-bias begge er proportionale med hele variansen af henholdsvis v og w.

Ved hjælp af en fænomenologisk model for koprotorens bevægelse under indfly-
delse af vindens tre komponenter bliver de fire systematiske fejl beregnet. Denne
fænomenologiske model indeholder 5 instrumentkonstanter, nemlig kalibrerings-
længden �, d.v.s. længden af den søjle af luft, der skal blæse gennem anemome-
tret for at rotoren skal dreje en radian, længdekonstanten �0, som er længden af
den søjle af luft, der skal blæse gennem anemometret for at rotoren skal have
reageret med 63% af en pludselig ændring af vindhastigheden, endnu en længde
Λ, for hvilken det ikke har været muligt at give en nem kvalitativ fortolkning,
samt to dimensionsløse konstanter, µ1 og µ2, som karakteriserer anemometrets
vertikalvinkel-følsomhed til første og anden orden i inklinationsvinklen. De tre
længder �, �0 og Λ er alle positive. De to konstanter µ1 og µ2 er begge nul, dersom
kopanemometret har en “ideel” vertikalvinkel-følsomhed, d.v.s. er ufølsomt over
for vindkomponenten langs koprotorens akse. Hvis µ1 er nul, er vertikalvinkel-
følsomheden symmetrisk, hvilket medfører, at stress-bias er nul.

Denne fænomenologiske model gør det muligt, under antagelse af Taylor’s hypotese
for “frossen turbulens” og med anvendelse af standardformlerne for de vertikale
profiler af middelvindhastigheden, varianserne af u, v og w og den molekylære
dissipationshastighed af turbulent kinetisk energi i det diabatiske, horisontalt ho-
mogene overfladegrænselag, at udtrykke de fire typer systematiske fejl ved hjælp af
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de fem instrumentparametre samt de tre atmosfæriske længder, højden, z, ruhed-
slængde, z0 og Monin-Obukhov længden, L. Da u-bias og stress-bias udelukkende
skyldes den del af turbulensen, hvis bølgelængder er mindre end længdekonstan-
ten, �0, er disse systematiske fejl i reglen ubetydelige, typisk henholdsvis 1% og
0.01%. Af de to øvrige systematiske fejl, v-bias og w-bias, er den første altid
størst. Den er nemlig praktisk taget uafhængig af de fem instrumentkonstanter og
lig med det halve af variansen p̊a vindretningen, hvorimod w-bias er lig med det
halve af variansen p̊a vindens inklination, multipliceret med µ2, som numerisk er
typisk 1 eller mindre. Erfaringer fra målinger har vist, at vindretningsvariansen
altid er større end inklinationsvariansen og, især under stærkt ustabile forhold,
meget større. S̊aledes overskrider w-bias sjældent nogle f̊a procent, mens v-bias
forholdsvis nemt kan være 10%.

Teknikken til bestemmelse af bias p̊a den målte middelværdi kan anvendes p̊a
andre typer instrumenter, b̊ade instrumenter, der, ligesom kopanemometret, adly-
der en første-ordens differentialligning af typen (284), og instrumenter, der følger
højere-ordens differentialligninger. Idet vi nu begrænser os til et enkelt input, x̃,
kan vi generalisere (284) til ligningen for et n’te-ordens dynamisk system. Den n’te
tidsafledede af output ỹ sættes lig med en funktion af x̃, ỹ og alle de tidsafledede
af ỹ til og med orden n− 1, d.v.s.

dnỹ

dtn
= F

(
ỹ,
dy

dt
, . . . ,

dn−1ỹ

dtn−1
, x̃

)
. (285)

Ud fra denne ligning vil det være muligt at bestemme den systematiske fejl p̊a
middelværdien af ỹ, som skyldes, at x̃ har variationer p̊a tidsskalaer, som er små i
forhold til filterkonstanten af måleinstrumentet, der, dynamisk set, er karakteris-
eret ved funktionen F .

Pitot-røret, der som anemometer er meget anvendt p̊a fly og i vindtunneller, samt
vindtryksanemometret og CSIRO-instrumentet til bestemmelse af tætheden af
mikroskopiske dr̊aber i skyer bliver anvendt som eksempler p̊a endnu et første-
ordens system (Pitot-røret) og to anden-ordens systemer. Undersøgelsen viser,
naturligt nok, at hvis man lineariserer output ỹ med en opdateringsfrekvens, som
er stor i forhold til den reciprokke reaktionstid for instrumentet, vil den syste-
matiske fejl p̊a middelværdien ikke f̊a bidrag fra den del af variansen, der svarer
til fluktuationer, som er langsommere end systemets reaktionstid. Den vil kun f̊a
bidrag fra den højfrekvente del af variansen og, helt generelt, være proportional
med denne.

Vi vender tilbage til kopanemometret og viser, hvorledes det er muligt operationelt
at reducere den problematiske v-bias til maksimalt omkring 1% ved at anvende en
vindretningsføler. Ved nemlig at lade hver fulde omdrejning af koprotoren “trigge”
en aflæsning af vindretningsføleren kan man beregne den s̊akaldte vindvejsvektor
for en bestemt midlingstid. Vindvejsvektoren, som en den resulterende horisontale
flytning af en hypotetisk luftpartikel, som hele tiden bevæger sig i overensstem-
melse med den vindhastighedsvektor, som kopanemometret måler, indeholder in-
formation om b̊ade vindens middelretning-og størrelse. Som en ekstragevinst kan
man ogs̊a let beregne vindretningsvariansen ved denne teknik.

Til sidst bliver det diskuteret, hvorledes en præcis definition af et vindstød kan
bringes i anvendelse, og hvorledes kopanemometret kan bruges til vindstødsbe-
stemmelse.
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acteristics of Surface Layer Turbulence. Quart. J. Roy. Meteorol. Soc., 98,
563-589.

Kaimal, J.C., Wyngaard, J.C., Haugen, D.A., Coté, O.R., Izumi, Y, Caughey, S.J.
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Wyngaard, J.C. and Coté, O.R. (1972). Cospectral Similarity in the Atmospheric

Surface Layer. Quart. J. Roy. Meteorol. Soc., 98, 590-603.
Wyngaard, J.C., Bauman, J.T. and Lynch, R.A. (1974). Cup Anemometer Dy-

namics. Proc. Instrument Society of America, Pittsburgh, PA, May 10-14, 1971,
1, 701-708.

Wyngaard, J.C. (1981). Cup, Propeller, Vane, and Sonic Anemometers in Turbu-
lence Research. Annu. Rev. Fluid Mech., 13, 399-423.

Wyngaard, J.C., Businger, J.A., Kaimal, J.C. and Larsen, S.E. (1982). Comments
on ‘A Revaluation of the Kansas Mast Influence on Measurements of Stress
and Cup Anemometer Overspeeding’. Boundary-Layer Meteorol., 22, 245-250.

Zhang, S.F, Oncley, S.P. and Businger, J.A. (1988). A Critical Evaluation of the
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A Spectral Corrections to u-bias

The spectrum for wave numbers numerically smaller than 2π/Lu is in general not
too well known; it is different in different situations. However, since it is finite
and since in our bias calculation it gets multiplied by k2 before integration, its
detailed behavior in this wave-number region is not important and we will just let
it be constant. For very high wave numbers the spectrum will fall off much more
rapidly than described by (109). In the dissipation range, i.e. in the range where
|k| is equal to or larger than the reciprocal of the Kolmogorov length scale

η =
(
ν3

ε

)1/4

, (A.1)

ν ∼ 1.5 10−5 m2 s−1 being the kinematic viscosity of air, we can safely set the
spectrum equal to zero.

We use a composite spectrum of the form

Fu(k) =
1
2
α1ε

2/3




L′
u
5/3 for 0 ≤ |k| ≤ L′

u
−1

k−5/3 for L′
u
−1 ≤ |k| < η−1

0 for η−1 ≤ |k| <∞

, (A.2)

to determine the order of magnitude of the overestimation in (111).

The quantity L′
u is not quite the same as the integral length scale Lu as we can

see from the following argument. The value of Fu(0) is proportional to Lu since,
according to (69), (82) and Taylor’s hypothesis

Fu(0) =
1
U
Su(0) =

1
U

1
2π

∫ ∞

−∞
Ru(τ)dτ

=
1
π
〈u2〉Tu

U
=

〈u2〉Lu

π
(A.3)

so that

〈u2〉 =
πFu(0)
Lu

=
π

2
α1(εL′

u)2/3L′
u

Lu
. (A.4)

On the other hand, the variance is equal to the area under the spectrum, i.e.

〈u2〉 =
∫ ∞

−∞
Fu(k)dk =

5
2
α1(εL′

u)2/3

{
1 − 3

5

(
η

L′
u

)2/3
}
. (A.5)

Equations (A.4) and (A.5) imply

L′
u =

5
π
Lu

{
1 − 3

5

(
η

L′
u

)2/3
}

≈ 5
π
Lu, (A.6)
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since L′
u ∼ z and

η ∼
(u∗z
ν

)−3/4

z ∼ 10−4z. (A.7)

δu = α1
�

�+ Λ
ε2/3

U2

{∫ L′
u
−1

0

k2�20
1 + k2�20

L′
u
5/3
dk +

∫ η−1

L′
u
−1

k2�20
1 + k2�20

k−5/3dk

}

= α1
�

�+ Λ
(ε�0)2/3

U2

{∫ ∞

0

ξ1/3

1 + ξ2
dξ +

(
L′

u

�0

)5/3 ∫ �0/L′
u

0

ξ2

1 + ξ2
dξ

−
∫ �0/L′

u

0

ξ1/3

1 + ξ2
dξ −

∫ ∞

�0/η

ξ1/3

1 + ξ2
dξ

}

≈ α1
�

�+ Λ
(ε�0)2/3

U2

{
π√
3
− 5

12

(
�0
L′

u

)4/3

− 3
2

(
η

�0

)2/3
}
. (A.8)

The u-bias will therefore with �0 = 2 m and z = 5 m, say, have to be corrected
down from π/

√
3 ≈ 1.81 to π/

√
3 − 0.0144 ≈ 1.80—a correction we hardly need

to worry about.

The ratio between L′
u and η is proportional to the Reynolds number

Re =
u∗z
ν

(A.9)

to the power 3/4. As we see, it is the ratio between the numerically highest and
lowest wave numbers between which the longitudinal velocity spectrum is given
by the equation (109). This is three orders of magnitude or more in the surface
layer and the spectrum in the dissipation is seldom of practical interest. Figure 17
shows our spectral model (without the dissipation range).

B Discrete Rice Theory

We consider the time series ũ(t) = U + u being sampled with the temporal reso-
lution ∆t.

If u0 ≡ u(n∆t) < U − U and u1 ≡ u((n+ 1)∆t) > U − U we know that the level
U has been up-crossed at least once in the period from n∆t to (n + 1)∆t. If we
call the probability for this event Prob(u0 < U − U, u1 > U − U) then the lower
limit of the average number of times the level U has been exceeded in the period
of time T = N∆t is NProb(u0 < U −U, u1 > U −U) and the corresponding lower
limit of the average rate becomes

η′U =
N

T
Prob(u0 < U − U, u1 > U − U)

= Prob(u0 < U − U, u1 > U − U)/∆t. (B.1)

Risø–R–615(EN) 77



Fu(k)

kLu

k2�20
1+k2�20

( 5
π ,

〈u2〉Lu

π )
�

Figure 17. The simple spectrum (A.2) (thick line) and the u-bias high-pass filter
(thin line). Note that the axes are linearly scaled.

When the temporal resolution becomes extremely good, i.e. when ∆t → 0, then
η′U becomes the true excursion rate beyond U , viz.

lim
∆t→0

η′U = ηU . (B.2)

Let P̃ (u0, u1) be the joint probability density of u0 and u1. Then

Prob(u0 < U − U, u1 > U − U) =
∫ U−U

−∞
du0

∫ ∞

U−U

du1P̃ (u0, u1). (B.3)

We introduce the transformation

uc = 1
2 (u0 + u1)

∆u = u1 − u0


⇐⇒




u0 = uc − ∆u/2

u1 = uc + ∆u/2

(B.4)

of the integration variables, and since the Jacobian is one, we can reformulate
(B.3) in the following way:

Prob(u0 < U − U, u1 > U − U) =
∫ ∞

0

d∆u
∫ U−U+∆u/2

U−U−∆u/2

ducP (uc,∆u),(B.5)

where

P (uc,∆u) ≡ P̃ (uc − ∆u/2, uc + ∆u/2). (B.6)

For small values of ∆t the jump ∆u will usually be small compared to uc when
uc ∼ U − U . Stated differently, the probability density P (uc,∆u) in this domain
is relatively small when ∆u>∼uc. Therefore we can approximate the last integral
in (B.5) by ∆uP (U − U,∆u) so that

Prob(u0 < U − U, u1 > U − U) ≈
∫ ∞

0

∆uP (U − U,∆u)d∆u. (B.7)
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Inserting (B.7) in (B.1), the rate η′U becomes

η′U =
1

∆t

∫ ∞

0

∆uP (U − U,∆u)d∆u. (B.8)

We see that in the limit ∆t→ 0 (B.8) becomes identical to (253).

We note that uc and ∆u as defined by (B.4) are uncorrelated. If P̃ (u0, u1) were
joint Gaussian then P (uc,∆u) would also be joint Gaussian and, since uc and ∆u
are uncorrelated, they would in this case also be statistically independent. This
means that P (uc,∆u) could be written as a product of two probability densities
as

P (uc,∆u) = P1(uc)P2(∆u). (B.9)

If we assume that (B.9) is true in general we can determine η′U for any probability
density of uc and in particular allow for the possibility that uc has a large positive
skewness and P1(uc) a correspondingly ‘long tail to the right’.

However, in order to be specific we will adopt the idea of Beljaars (1987) and
calculate η′U with P̃ (u0, u1) being joint Gaussian, i.e.

P̃ (u0, u1) =
exp
(
−u

2
0 − 2ρuu0u1 + u2

1

2〈u2〉(1 − ρ2
u)

)
2π〈u2〉

√
1 − ρ2

u

, (B.10)

where

ρu = ρu(∆t) =
〈u0u1〉
〈u2〉 =

Ru(∆t)
Ru(0)

(B.11)

is the correlation between u0 and u1.

Since

〈∆u2〉 ≡ 〈(u1 − u0)2〉 = 2〈u2〉(1 − ρu), (B.12)

P (uc,∆u) becomes

P (uc,∆u) =
exp
(
− u2

c

(1 + ρu)〈u2〉

)
√

(1 + ρu)π〈u2〉

exp
(
− ∆u2

2〈∆u2〉

)
√

2π〈∆u2〉
. (B.13)

Inserting (B.13) in (B.8), we get

η′U =

√
〈∆u2〉
∆t

exp
(
− (U − U)2

(1 + ρu)〈u2〉

)
√

(1 + ρu)2π2〈u2〉

≈
√
〈∆u2〉
∆t

exp
(
− (U − U)2

2〈u2〉

)
2π
√
〈u2〉

. (B.14)

Risø–R–615(EN) 79



With the assumption that P (uc,∆u) is given by (B.13), we can actually quan-
tify the condition that (B.7) is a good approximation to (B.5) by calculating a
correction factor to (B.14). We proceed as follows:

Let

x =
U − U√

(1 + ρu)〈u2〉
(B.15)

and

ε =
∆u√

(1 + ρu)〈u2〉
. (B.16)

Then

∫ U−U+∆u/2

U−U−∆u/2

P1(uc)duc =
∫ U−U+∆u/2

U−U−∆u/2

exp
(
− u2

c

(1 + ρu)〈u2〉

)
duc√

(1 + ρu)π〈u2〉

=
1√
π

∫ x+ε/2

x−ε/2

e−t2dt

=
1
2
{erfc(x− ε/2)− erfc(x+ ε/2)}. (B.17)

Expanding (B.17) in power series of ε, we get

∫ U−U+∆u/2

U−U−∆u/2

P1(uc)duc ≈ e−x2

√
π
ε

{
1 + (2x2 − 1)

ε2

12

}
. (B.18)

Instead the first line of (B.14), evaluation of (B.5) yields

η′U =

√
〈∆u2〉
∆t

exp
(
− (U − U)2

(1 + ρu)〈u2〉

)
√

(1 + ρu)2π2〈u2〉

×
{

1 +
1
6

(
2

(U − U)2

(1 + ρu)〈u2〉
− 1
)

〈∆u2〉
(1 + ρu)〈u2〉

}
. (B.19)

We see immediately that the correction factor is close to one if the following two
conditions are fulfilled:

〈∆u2〉
(1 + ρu)〈u2〉 = 2

1 − ρu

1 + ρu
� 1 (B.20)

and

2
1 − ρu

1 + ρu

(U − U)2

(1 + ρu)〈u2〉 � 1. (B.21)

Assuming that U∆t is much smaller than length the scale Lu, we may use the
spectrum (109) to obtain an approximate expression for ρu. The result is

ρu = ρu(∆t) ≈ 1 − 3
4
Γ
(

1
3

)
α1

(εU∆t)2/3

〈u2〉 . (B.22)
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Under neutral conditions the expressions (120) with (128) and (275) apply and
(B.22) can be written in the form

1 − ρu ≈ 0.43
(
U∆t
z

)2/3

. (B.23)

If ∆t is set equal to the time for one revolution of a cup anemometer rotor with
the calibration distance �, then U∆t = 2π� and (B.23) becomes

1 − ρu ≈ 1.5
(
�

z

)2/3

. (B.24)

The Risø cup anemometer has � = 0.2, which means that for z = 10 m, 1−ρu will
be about 0.11. Setting U − U equal to 2 standard deviations, say, the correction
factor in (B.19) becomes 1.06.

Assuming that 1 − ρu is small compared to one, we can expand (B.19) in powers
of this quantity. The result to first order is

η′U ≈
√
〈∆u2〉
∆t

exp
(
− (U − U)2

2〈u2〉

)
2π
√
〈u2〉

×
{

1 − 1
6

(
(U − U)2

〈u2〉 − 1
)

(1 − ρu)
}
. (B.25)

We see that to the first order in 1 − ρu the correction factor is one if U − U is
exactly one standard deviation.

Returning to the approximation (B.14) and comparing this result with (257), we
see that the expressions for ηU and η′U are nearly the same and, in fact, become
identical in the limit ∆t → 0. Instead of

√
〈u̇2〉, we must determine

√
〈∆u2〉/∆t

in order to evaluate η′U .

Using (B.12), we get

〈∆u2〉 = 2{Ru(0) −Ru(∆t)}

= 2
∫ ∞

−∞
{1 − cos(ω∆t)}Su(ω)dω

= ∆t2
∫ ∞

−∞
sinc2

(
ω∆t

2

)
ω2Su(ω)dω. (B.26)

In (B.26) we are considering the unfiltered signal, but if we take the filtering by
the cup anemometer into account we see that the result means that (264) and
(266) in the case of discrete sampling must be replaced by

〈∆s2〉
∆t2

=
1
�2

∫ ∞

−∞
sinc2

(
ω∆t

2

)
ω2Su(ω)
1 + ω2τ2

0

dω

=
U2

�2

∫ ∞

−∞
sinc2(πk�)

k2Fu(k)
1 + k2�20

dk, (B.27)
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where � is the calibration distance given by (4).

Assuming the spectrum (109), we get instead of (267)

〈∆s2〉
∆t2

=
α1

2
(ε�0)2/3

(
U

π�2

)2

I

(
2π

�

�0

)
, (B.28)

where

I(x) =
∫ ∞

0

{1 − cos(xs)} s
−5/3

1 + s2
ds. (B.29)

Kristensen et al. (1991) found

I(x) =
π√
3
{cosh(x) − 1}

− 9
√

3 π3/2

10Γ(1/3)Γ(5/6)

(x
2

)8/3

1F2

(
1;

7
3
,
11
6

;
[x
2

]2)
, (B.30)

where 1F2(a; b, c; z) is one of the generalized hypergeometric functions (Grad-
shteyn and Ryzhik, 1980).

For x<∼1, I(x) can be approximated by

I(x) ≈ πx2

2
√

3

{
1 − 27

√
π 2−5/3

10Γ(1/3)Γ(5/6)
x2/3

}
≈ πx2

2
√

3
{1 − 0.50 x2/3} (B.31)

with the consequence that (B.28) becomes

〈∆s2〉
∆t2

≈ π√
3
α1(ε�0)2/3 U

2

�2�20

{
1 − 1.70

(
�

�0

)2/3
}
. (B.32)

In other words, ηU is reduced by the factor

η′U
ηU

=

√
1 − 1.70

(
�

�0

)2/3

. (B.33)

Replacing
√
〈ṡ2〉 by

√
〈∆s2〉/∆t2 in (271), the apparent dimensionless gust µ′ can

be expressed in terms of the real dimensionless gust µ given by (278) as

µ′ ≈ µ− 0.85
µ

(
�

�0

)2/3

. (B.34)

Strictly speaking, the results (B.33) and (B.34) are based on the assumption that
the cup-anemometer rotor turns with a constant angular velocity when the wind
speed is constant. As I pointed out in subsection 2.8 this is usually not the case.
Therefore, we will usually average the cup-anemometer signal over at least one full
revolution. If we want to have the best possible temporal resolution, we average
over just one revolution and consequently the low-pass filter will be given by (136),
i.e.

H(k) =
sinc2(πk�)
1 + k2�20

,

82 Risø–R–615(EN)



which I repeat here for convenience.

As a consequence, the expressions for 〈ṡ2〉 and 〈∆s2〉/∆t2 should be modified
accordingly.

The first will now be given by (B.28), i.e.

〈∆s2〉
∆t2

=
α1

2
(ε�0)2/3

(
U

π�2

)2

I

(
2π

�

�0

)
, (B.35)

where I(x) is given by (B.30), whereas 〈∆s2〉/∆t2 becomes

〈∆s2〉
∆t2

= α1(ε�0)2/3

(
U

π�2

)2(
2π

�

�0

)−2

J

(
2π

�

�0

)
, (B.36)

where

J(x) =
∫ ∞

0

{1 − cos(xs)}2 s
−11/3

1 + s2
ds. (B.37)

This integral can also be evaluated analytically as

J(x) =
π√
3
{cosh(x) − 1}2

− 162
√

3π3/2

385Γ(1/3)Γ(5/6)

{
x14/3

4 1F2

(
1;

10
3
,
17
6

;x2

)

−
(x

2

)14/3

1F2

(
1;

10
3
,
17
6

;
[x
2

]2)}
.(B.38)

For x<∼1, J(x) is given approximately by

x−2J(x) ≈ πx2

4
√

3

{
1 − 486

√
π(1 − 2−8/3)

385Γ(1/3)Γ(5/6)
x2/3

}

≈ πx2

4
√

3
{1 − 0.62 x2/3}. (B.39)

The modified equations for η′U/ηU and µ′ now become

η′U
ηU

=

√
1 − 0.425

(
�

�0

)2/3

(B.40)

and

µ′ = µ− 0.21
µ

(
�

�0

)2/3

. (B.41)
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