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ABSTRACT

Modern, fast cup anemometers are very useful for measuring the mean-wind speed. The calibration is linear
and its operation is well described as a linear, first-order filter. Discussion in the literature about the importance
of the response asymmetry to increases and decreases in the streamwise turbulent wind-velocity component
seems to have ended at the conclusion that there is no detectable influence on the mean-wind determination
from this source, that is, the part of ‘‘overspeeding’’ due to response asymmetry can be neglected. However, a
bias on the mean-wind speed from wind-direction fluctuations cannot always be excluded. Here the author
addresses the problem of whether higher-order moments are influenced by the asymmetry and the direction
fluctuations. Based on a theoretical analysis—a straightforward perturbation calculation—and an experimental
test, the author finds that moments up to and including the fourth order are unaffected by the asymmetry as
well as wind-direction fluctuations. The author suspects that this is true even for higher-order moments. It is
argued that the cup anemometer together with a wind vane is well suited for measuring the horizontal components
of the turbulent wind velocity.

1. Introduction

The cup anemometer was invented in 1846 by the
Irish astronomer T. R. Robinson, and quite an abundance
of literature has been produced about this instrument,
which today has essentially the same design. Its history
has been told in much detail by Middleton (1969), Ka-
ganov and Yaglom (1976), and Wyngaard (1981), and
in abbreviated forms by Kristensen (1998, 1999a,b). In
the last three articles it is pointed out that the linearity
of the calibration, the robustness, and the omnidirec-
tionality make the cup anemometer well suited for rou-
tine measurements and that the so-called overspeeding
is unimportant, in contrast to a rather well-established
prejudice.

The speculation has been that overspeeding, which is
a positive bias of the mean-wind determination, has its
cause in the circumstance that the cup anemometer re-
sponds more readily to an increase than to a decrease
of the wind speed and thus ‘‘spends more time on the
high side than on the low side of the mean wind’’ (Kris-
tensen 1993). In fact, if there is a bias it is caused almost
entirely by wind-direction fluctuations and not by the
asymmetric response.
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But what about higher-order moments? Frenzen
(1988) showed that it is possible to construct a cup
anemometer with a distance constant as small as 0.2 m,
which means that it can easily compete with the sonic
anemometer in resolving the smallest turbulent eddies
of the streamwise velocity component. Will the asym-
metric response or the wind-direction fluctuations give
rise to a bias of the determination of second-, third-,
and fourth-order moments? This is the subject of the
following analysis.

2. Theoretical considerations

The equation of motion for the cup rotor can be writ-
ten

5 F(s̃, h̃, w̃),˙̃s (1)

where s̃ is the instantaneous angular velocity of the rotor,

h̃ 5 (ũ2 1 )1/2,2ỹ (2)

the instantaneous horizontal wind velocity with the ũ
component along and perpendicular to the mean-windỹ
direction, and w̃ the instantaneous vertical velocity com-
ponent. Equation (1) states that the rate of change of s̃
is a function F of the wind velocity and angular velocity
itself.

Kristensen (1998) expanded (1) to second order in
in the neighborhood of the mean-wind ve-(s̃, ũ, ỹ , w̃)

locity U [ ^ũ& and the cup anemometer response S to
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a constant, horizontal wind velocity with the magnitude
U. Expressed in terms of the relative fluctuations

s̃ 2 S
s 5 , (3)

S

ũ 2 U
u 5 , (4)

U

ỹ
y 5 , and (5)

U

w̃
w 5 , (6)

U

the result was
2 2 2t ṡ 1 s 5 a u 1 a w 1 a s 1 a u 1 a w 1 a su0 1 2 3 4 5 6

1
2 31 a uw 1 a ws 1 y 1 O(h ),7 8 2

(7)

where t 0 is the instrument time constant, which is in-
versely proportional to U, and a1, . . . , a8 are dimen-
sionless constants. The last term is the third-order re-
sidual with h 5 max( |u|, |y |, |w| ). Apart from the term
y 2, this is exactly the equation Wyngaard et al. (1974)1

2

suggested for describing the dynamical behavior of the
cup anemometer.

Kristensen (1998) constructed a phenomenological
model for the cup equation of motion in terms of five
instruments constants and interpreted the coefficients
a1, . . . , a8.

In the following we shall simplify the discussion a
little and assume that S is proportional to U and that
the anemometer has an ideal angular response, that is,
that it is insensitive to w. The implications are

a 5 1, (8)1

a 5 a 5 a 5 a 5 0, and (9)2 5 7 8

a 1 a 1 a 5 0. (10)3 4 6

On the basis of (8) and (9), (7) reduces to
2y

2 2t ṡ 1 s 5 u 1 a s 1 a u 1 a us 10 3 4 6 2
31 O(h ) (11)

with the constraint (10).
Even truncated after second order, this equation can-

not in general be solved analytically with specified ex-
ternal forcing functions u(t) and y(t). However, under
the rather realistic assumption that the variances of s,
u, and y are less than one, we may obtain an approximate
solution by means of a perturbation calculation.

a. Perturbation scheme

We follow a standard procedure and write the solution
in the form

`

,s 5 s , s 5 O(h ). (12)O , ,
,51

This of course leads to an infinite hierarchy of equations.
In the following we need only the first two and they are

t ṡ 1 s 5 u and (13)0 1 1

2y
2 2t ṡ 1 s 5 a s 1 a u 1 a us 1 . (14)0 2 2 3 1 4 6 1 2

Solving (13) and (14), we get
` dt12t /t1 0s (t) 5 e u(t 2 t ) and (15)1 E 1t00

` dt12t /t 21 0s (t) 5 a e s (t 2 t )2 3 E 1 1t00

` dt12t /t 21 01 a e u (t 2 t )4 E 1t00

` dt12t /t1 01 a e u(t 2 t )s (t 2 t )6 E 1 1 1t00

`1 dt12t /t 21 01 e y (t 2 t ). (16)E 12 t00

We now determine the mean M1 5 ^s& and the central
moments M, 5 ^(s 2 ^s&),& for , . 1, under the as-
sumption that s and the wind components are stationary
time series. Mean values, indicated by angle brackets
^ &, are here to be understood as ensemble averages. This
means that all moments are independent of time and
that averages of products of the random variables at
different times are functions only of the time differences,
not of absolute time.

The expressions for M, are truncated after the , 1
1’s order. First, however, we derive a few simple rela-
tions from (13) and (14) without referring directly to
the explicit solution (15) and (16).

Multiplying (13) by , where , is an integer greater,21s1

than zero, and averaging, we get

t d0 , , ,21 , ,21^s & 1 ^s & 5 ^us & ⇒ ^s & 5 ^us &, , $ 1,1 1 1 1 1, dt
| |}}}z

50
(17)

since s1(t) and any power of s1(t) are stationary.
Next, we multiply (13) by (, 2 1) s2 and (14) by,22s1

(, $ 1), add the two equations, and average. The,21s1

result is

,21 ,22 ,11,^s s & 5 (, 2 1)^us s & 1 a ^s &1 2 1 2 3 1

2 ,21^y s &12 ,21 ,1 a ^u s & 1 a ^us & 1 . (18)4 1 6 1 2

Using (17) to obtain
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^ & 5 ^ &,,11 ,s us1 1 (19)

we may, by means of the constraint (10), reformulate
(18) as

,21 ,22 2 ,21 ,,^s s & 5 (, 2 1)^us s & 1 a {^u s & 2 ^us &}1 2 1 2 4 1 1

2 ,21^y s &11 , , $ 1.
2

(20)

Now we derive the moments. The first moment, also
called the overspeeding, becomes

3M 5 ^s & 1 ^s & 1 O(h ). (21)1 1 2
| |}]z

50

By setting , 5 1 in (17) it is easily seen that the first
term is zero. This is so because ^u& 5 0 according to
the definition (4).

We find ^s2& by setting , 5 1 in (20) and consequently,
2^y &

2 3M 5 a (^u & 2 ^us &) 1 1 O(h ). (22)1 4 1 2

This is the simplest expression for the overspeeding.
The first of the three terms on the right-hand side cor-
responds to a high-pass filtering of the streamwise ve-
locity component and the second to the systematic error
due to wind-direction fluctuations. This second term
dominates. A detailed discussion of overspeeding has
been carried out by Kristensen (1998).

For , $ 2 we have
,M 5 ^{s 2 ^s&} &,

,5 ^{(s 1 s 1 s 1 · · ·) 2 (^s & 1 ^s & 1 · · ·)} &1 2 3 2 3

, ,21 ,21 ,125 ^s & 1 ,^s s & 2 ,^s &^s & 1 O(h ).1 1 2 1 2 (23)

Applying the relations (17) and (20), we obtain
, ,22M 5 ^s & 1 (, 2 1)^us s &, 1 1 2

| | | |]} }}}}z z
, ,11O(h ) O(h )

2 ,21 , ,22 21 a {^u s & 2 ^us & 2 ,^us &[^u & 2 ^us &]}4 1 1 1 1
| | | | | |}}}] }} }}}}}}}}}z z z

,11 ,11 ,11O(h ) O(h ) O(h )

1 ,
2 ,21 2 ,22 ,121 ^y s & 2 ^y &^us & 1 O(h ). (24)1 12 2| | | |}}}] }}}}}z z

,11 ,11O(h ) O(h )

This is as far as we can reduce the expressions for the
moments without actually solving (13) and (14) and
using (15) and (16).

We note that for , $ 2, the leading term in the ex-
pression for M, is ^ &. According to (13), s1(t) is the,s1

response of a linear, first-order filter to the input u(t).
This means that if the instrument reacts fast enough to
resolve the smallest eddies (t 0 small), the leading term
in each of the central moments M, are actually the cor-
responding moments of u.

The important question is, therefore, if the next term

in M,, which is of order , 1 1 in h, will be detectable
compared to the first in magnitude. If this is the case
there will be a bias in higher-order moments when they
are determined by a cup anemometer. If not, a fast cup
anemometer will be well suited for measuring higher-
order moments of the fluctuating, streamwise velocity
component.

Consequently, we define the residuals
dM, [ M, 2 ^ &, , $ 2.,s1 (25)

Since they are all of higher order than two, we must
use approximations to reduce them to moments of order
two or less.

b. Approximations
We will make the simplest possible approximation,

namely, that u(t) is a Gaussian process. Since any linear
combination of u(t)’s, taken at different times t, is also
Gaussian, it follows from (15) and (16) that s1(t) and
s2(t) are also Gaussian processes.

For Gaussian processes with zero means all odd mo-
ments are zero and all even moments can be reduced
to homogeneous polynomials in second-order moments
by means of the Isserlis relation (an elegant proof can
be found in Frisch 1995). From now we limit ourselves
to cases where , # 4 and all we need here is the re-
duction of fourth-order moments, for which

^x1x2 x3 x4& 5 ^x1x2&^x3 x4& 1 ^x1x3&^x2 x4&

1 ^x1x4&^x2 x3& (26)
for four joint-Gaussian random variables (x1, x2, x3, x4)
with zero means.

The first implications are
4dM 5 O(h ) and (27)2

6dM 5 O(h ). (28)4

We will need to work a little harder on
dM 5 2^us s &3 1 2

2 2 3 21 a {^u s & 2 ^us & 2 3^us &[^u & 2 ^us &]}4 1 1 1 1

2 2^y s & 31 2 51 2 ^y &^us & 1 O(h ).12 2
(29)

By means of the Isserlis relation and (19) we can
simplify (29) somewhat. We have

2 2 2 2 2 2 2^u s & 5 ^u &^s & 1 2^us & 5 ^u &^us & 1 2^us & , (30)1 1 1 1 1

3 2 2^us & 5 3^us &^s & 5 3^us & , and (31)1 1 1 1

2 2 2 2 2 2 2^y s & 5 ^y &^s & 1 2^ys & 5 ^y &^us & 1 2^ys &1 1 1 1 1

25 ^y &^us &, (32)1

since, in view of (15) and Taylor’s hypothesis, ^y(t)s1(t)&
must be zero due to reflection symmetry.

The expression for dM 3 reduces to
dM 3 5 2{^us1s2& 2 a4^us1&[^u2& 2 ^us1&]}

2 ^y 2&^us1& 1 O(h5). (33)
We can break down (33) even further by using (15),

(16), and the Isserlis relation on ^us1s2&:
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` `dt dt1 12t /t 2 2t /t 21 0 1 0^us s & 5 ^u(t)s (t)s (t)& 5 a e ^u(t)s (t)s (t 2 t )& 1 a e ^u(t)s (t)u (t 2 t )&1 2 1 2 3 E 1 1 1 4 E 1 1t t0 00 0

` `dt 1 dt1 12t /t 2t /t 21 0 1 01 a e ^u(t)s (t)u(t 2 t )s (t 2 t )& 1 e ^u(t)s (t)y (t 2 t )&6 E 1 1 1 1 E 1 1t 2 t0 00 0

` dt12 2t /t1 05 a ^us &^s & 1 2 e ^u(t)s (t 2 t )&^s (t)s (t 2 t )&3 1 1 E 1 1 1 1 15 6t00

` dt12 2t /t1 01 a ^us &^u & 1 2 e ^u(t)u(t 2 t )&^s (t)u(t 2 t )&4 1 E 1 1 15 6t00

` `dt dt1 12 2t /t 2t /t1 0 1 01 a ^us & 1 e ^u(t)u(t 2 t )&^s (t)s (t 2 t )& 1 e ^u(t)s (t 2 t )&^s (t)u(t 2 t )&6 1 E 1 1 1 1 E 1 1 1 15 6t t0 00 0

`1 dt12 2t /t1 01 ^us &^y & 1 2 e ^u(t)y (t 2 t )&^s (t)y (t 2 t )&1 E 1 1 15 62 t | |00 ]}}}}}}z

50

`1 dt12 2 2t /t1 05 a ^us &{^u & 2 ^us &} 1 ^us &^y & 1 2a e ^u(t)s (t 2 t )&^s (t)s (t 2 t )&4 1 1 1 3 E 1 1 1 1 12 t00

` `dt dt1 12t /t 2t /t1 0 1 01 2a e ^u(t)u(t 2 t )&^s (t)u(t 2 t )& 1 a e ^u(t)u(t 2 t )&^s (t)s (t 2 t )&4 E 1 1 1 6 E 1 1 1 1t t0 00 0

` dt12t /t1 01 a e ^u(t)s (t 2 t )&^s (t)u(t 2 t )&.6 E 1 1 1 1t00

(34)

There are four types of covariances: ^u(t)u(t 2 t1)&,
^u(t)s1(t 2 t1)&, ^s1(t)u(t 2 t1)&, and ^s1(t)s1(t 2 t1)&.
Since u(t) and s1(t) are stationary these covariances are
independent of absolute time t. We have

^u(t)u(t 2 t1)& 5 R(t1), (35)

where R(t) is the autocovariance function. It then fol-
lows from (15) that

` dt22t /t2 0^u(t)s (t 2 t )& 5 e R(t 1 t ), (36)1 1 E 1 2t00

` dt22t /t2 0^s (t)u(t 2 t )& 5 e R(t 2 t ), and (37)1 1 E 2 1t00

` `dt dt2 32t /t 2t /t2 0 3 0^s (t)s (t 2 t )& 5 e e1 1 1 E Et t0 00 0

3 R(t 1 t 2 t )1 3 2

`1 dt22t /t2 05 eE2 t00

3 {R(t 1 t ) 1 R(t 2 t )}. (38)1 2 2 1

To show that they are all about the same when t 0 is
much smaller than the integral timescale

`1
T [ R(t) dt, (39)E2^u & 0

we apply the identity

` `dt
2t /t (,) ,0e f (t) 5 f (0)t , (40)OE 0t ,5000

where f (,)(t) denotes the ,’s derivative of the function
f (t).

Thus, to second order in t 0 we get

2˙ ¨^u(t)s (t 2 t )& ø R(t ) 1 R(t )t 1 R(t )t , (41)1 1 1 1 0 1 0

2˙ ¨^s (t)u(t 2 t )& ø R(t ) 2 R(t )t 1 R(t )t , (42)1 1 1 1 0 1 0

and

2¨^s (t)s (t 2 t )& 1 R(t ) 1 R(t )t . (43)1 1 1 1 1 0

Inserting in (34), the integrals become, by applying
again the identity (40),
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` dt12t /t1 0e ^u(t)s (t 2 t )&^s (t)s (t 2 t )&E 1 1 1 1 1t00

2 2¨ø R (0) 1 5R(0)R(0)t , (44)0

` dt12t /t1 0e ^u(t)u(t 2 t )&^s (t)u(t 2 t )&E 1 1 1t00

2 2¨ø R (0) 1 2R(0)R(0)t , and (45)0

`1 dt12t /t1 0e {^u(t)u(t 2 t )&^s (t)s (t 2 t )&E 1 1 1 12 t00

1 ^u(t)s (t 2 t )&^s (t)u(t 2 t )&}1 1 1 1

7
2 2¨ø R (0) 1 R(0)R(0)t . (46)02

There are no terms containing Ṙ(0) since R(t) is an even
function.

We now need a realistic expression for R(t) when t
is approaching zero. In many studies of this nature the
turbulent flow is assumed to be governed by the rules
of local isotropy, without being directly influenced by
the viscous dissipation of the kinetic energy. We may
obtain such an expression by starting from the power
spectrum S(v) since

`

R(t) 5 S(v) cos(vt) dv. (47)E
2`

Accepting Taylor’s hypothesis for frozen turbulence, we
have for |v|T * 1

S(v) 5 A^u2&T ( |v|T )25/3, (48)

where A is a dimensionless constant. This is the spec-
trum of u at high frequencies when observed by means
of an instrument with high (but not infinite) temporal
resolution. However, any instrument has a finite tem-
poral resolution. For the cup anemometer, for example,
it is necessary to average in time over at least one full
revolution of the rotor since its angular velocity is quite
uneven (see, e.g., Coppin 1982). For constant wind it
is periodical with a period equal to the duration of one
revolution that, for most cup anemometers, is not far
from the time constant t 0. Also the sonic anemometer
has a finite temporal resolution since it averages the
velocity field over lines of finite lengths. This general,
instrumentally imposed averaging must be taken into
account in the expression for S(v) by multiplying by a
transfer function corresponding to the instrumental tem-
poral resolution. Let us here just assume that the av-
eraging is an unweighted average over the time u, cor-
responding to the cup anemometer case. Then (48) must
be replaced by

uv
2 2 25/3S(v) 5 A sinc ^u &T (|v |T ) , (49)1 22

where sinc(x) 5 sin(x)/x.
The autocovariance function can now be obtained

from (47) as follows:

` ` `

R(t) 5 S(v) cos(vt) dv 5 S(v) dv 2 2 S(v){1 2 cos(vt)} dvE E E
2` 2` 0

| |}}}}}}z
25^u &

` 2 8/3vu 3 1 t |t|
2 2 25/3 25 ^u & 1 2 2AT sinc {1 2 cos(vt)}(vT ) dv 5 ^u & 1 2 G A 1 O . (50)E 2/3 4/3 2/3 21 2 5 1 2 1 26[ ]2 2 3 T u T u0

Thus,
2/3 4/3t t0 02R̈(0)t 5 R(0)O . (51)0 [ ] [ ]1 2T u

Substituting in (34), we get
1

2 2^us s & 5 a ^us &{^u & 2 ^us &} 1 ^y &^us &1 2 4 1 1 12
21 2(a 1 a 1 a )R (0)3 4 6

| |}}}}}}}z

50

2/3 4/3t t0 021 R (0)O . (52)[ ] [ ]1 2T u

The expression (33) for dM 3 reduces to

2/3 4/3t t0 02 2 5dM 5 ^u & O 1 O(h ). (53)3 [ ] [ ]1 2T u

On basis of these considerations it seems natural to
postulate that the correction terms dM, are very small
so that the second, third, and fourth moments of the
streamwise velocity component can be determined with-
out bias by means of a cup anemometer.

3. Experimental field test

In July 1994 wind speed measurements were carried
out at a height of 6 m from two masts separated by 3
m inside an artillery shooting range at Borris in Jutland
in Denmark. A Solent Ultrasonic Anemometer model
1012R was mounted at the top of one mast and a cup
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FIG. 1. Time series of second-order moments. Thick line, cup data; thin line, sonic data. The
time along the abscissa is in units of 10 min.

FIG. 2. Time series of third-order moments. Thick line, cup data; thin line, sonic data. The
time along the abscissa is in units of 10 min.

anemometer with a distance constant l0 equal to about
1.5 m plus a wind direction vane at the top of the other.
According to, for example, Kristensen et al. (1989), the
turbulence length scale L for the streamwise velocity
component is about five times the height of observation,
that is, about 30 m. This means that t 0/T 5 l0/L ø
0.05. The sampling rates were 10 Hz for the sonic and
5 Hz for the cup and vane. The experiment is described
in detail by Kristensen (1999a). The same four periods
are analyzed and the intercalibration between the sonic
and the cup from these data are applied in the calculation
of 10-min averages of the higher-order moments of the
streamwise velocity component.

In this section u and s are the fluctuating, streamwise
wind velocity component and cup anemometer output
in physical units, both measured in meters per second,

and the results in the form of time series are shown in
Figs. 1, 2, and 3.

Apparently, the moments determined by the cup an-
emometer track the sonic moments in a way that seems
to support our postulate that there are no systematic
difference between ^sl& and ^ul&.

More revealing tests are plots of ^sl& versus ^ul&. Fig-
ures 4, 5, and 6 show these comparisons.

Only the linear, least squares fit to the third-order
moment seems to deviate significantly from the line ^s3&
5 ^u3&. Even in this case this line seems a reasonable
fit to most of the points. We have taken a closer look
at the situation. Inspecting Fig. 2, we see that there is
a large difference between ^s3& and ^u3& at one particular
time in the third record in the lower left frame. The
point indicated by a filled circle in Fig. 5 corresponds
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FIG. 3. Time series of fourth-order moments. Thick line, cup data; thin line, sonic data. The
time along the abscissa is in units of 10 min.

FIG. 5. Comparison between third-order moments. The thick line
corresponds to ^s3& 5 ^u3& and thin line the linear, least squares fit
to all the points with equal weight, slope 0.73 6 0.04 and offset 0.01
6 0.02. The single outlier, which can also be seen in the lower left
frame of Fig. 2, is marked with a filled circle. The dashed and the
dotted line are orthogonal linear regression lines to the measurements,
with and without the outlier, respectively. The first has the slope 0.86
6 0.08 and the offset 0.03 6 0.04; the second, 0.95 6 0.08 and 0.04
6 0.04.

FIG. 4. Comparison between second-order moments. The thick line
corresponds to ^s2& 5 ^u2& and thin line (hardly discernable) the linear,
least squares fit to all the points with equal weight, slope 1.01 6
0.02 and offset 20.01 6 0.02.

to the same difference. This outlier seems to influence
the slope significantly, in particular because we mini-
mize the sum of the squares of the vertical, rather than
the perpendicular distance to a straight line, thereby
exaggerating the problem. We have fitted straight lines
to the points once again, with and without the outlier,
and this time we have used orthogonal linear regression.
Actually, this is justified by the argument that ^s3& and
^u3&, representing two independent estimates of the same
quantity, should be treated statistically in a symmetric
way. We find that the slope and the offset are 0.86 6
0.08 and 0.03 6 0.04 when the outlier is included and
0.95 6 0.08 and 0.04 6 0.04 when it is excluded. The
number of observations is 169, which means that the
standard error is 1/ 169 . 0.077. This means that theÏ

difference between the slopes divided by this standard
error becomes 1.2, a number, which according to Neter
et al. (1989), shows that the outlier must be considered
influential. Except that the wind speed in this particular
10-min period was very instationary, it has not been
possible to determine if there should be a particular
physical reason for the large deviation of one point from
the fitted line. However, in view of how well ^s3& and
^u3& otherwise track one another in Fig. 2, it seems
reasonable to exclude this point from the analysis. If
we do that the new fit of the slope is within one standard
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FIG. 6. Comparison between fourth-order moments. The thick line
corresponds to ^s4& 5 ^u4& and thin line the linear, least squares fit
to all the points with equal weight, slope 1.02 6 0.02 and offset
20.12 6 0.16.

FIG. 8. Histograms of ^u3& (thin line), ^s3& (thicker line), and ^s3&
2 ^u3& (thick line).

FIG. 9. Histograms of ^u4& (thin line), ^s4& (thicker line), and ^s4&
2 ^u4& (thick line).

FIG. 7. Histograms of ^u2& (thin line), ^s2& (thicker line), and ^s2&
2 ^u2& (thick line).

error of 1. In Figs. 4 and 6 the second- and fourth-order
moments from this period of observation are indicated
by filled circles. In these cases the outliers do not seem
to influence the least squares fits significantly, in the
first case probably because lower-order moments are
less sensitive, and in the second because the range of
fourth-order moments is very large.

Taking a closer look at the longest record, which is
displayed in the fourth frame of Figs. 1, 2, and 3, we
may present the data in still another form, namely, as
histograms of ^ul&, ^sl&, and ^s& l 2 ^u& l. This record
contains a total number of 72 observations and the his-
tograms are displayed in Figs. 7, 8, 9, with the means
and root-mean-square (rms) deviations summarized in
Table 1.

Inspecting Figs. 7, 8, 9, and Table 1, we note

1) that systematic differences between the means and
root-mean-square deviations of ^ul& and ^sl& are un-
detectable;

2) that the means of ^sl& 2 ^ul& are between 3 and 8
times smaller than their root-mean-square deviations,
and between 10 and 18 times smaller than the root-
mean-square deviations of ^ul& and ^sl&; and

3) that the root-mean-square deviations of ^sl& 2 ^ul&
are between 2 and 3 times smaller than those of ^ul&
and ^sl&.

With respect to item 2 one could, on the basis of
Table 1, argue that, with as many as 72 observations,
the means of ^sl& 2 ^ul& might be slightly positive, that
is, that the cup anemometer will overestimate higher-
order moments compared to the sonic anemometer.
However, in view of item 3, these ‘‘systematic errors’’
are, if existing, so small that they are of no importance
from a field experimental point of view.

We may also compare the skewness

M 3S 5 (54)
2 3/2^s &

and the kurtosis

M 4K 5 (55)
2 2^s &
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TABLE 1. Means and root-mean-square deviations of ^u,&, ^s,&, and
^s,& 2 ^u,&.

Mean rms

^u2&
^s2&
^s2& 2 ^u2&
^u3&
^s3&
^s3& 2 ^u3&
^u4&
^s4&
^s4& 2 ^u4&

1.209
1.240
0.031

20.083
20.062

0.021
4.125
4.244
0.119

0.272
0.288
0.097
0.352
0.342
0.172
1.696
1.896
0.764

FIG. 10. Comparison between the skewnesses. The thick line cor-
responds to identity and the thin line to a linear, least squares fit with
equal weight to each point, slope 0.84 6 0.03 and offset 0.02 6 0.01.
The orthogonal linear regression, shown by a dashed line, has slope
0.94 6 0.08 and offset 0.03 6 0.030.

FIG. 11. Comparison between the kurtosises. The thick line cor-
responds to identity and the thin line to a linear, least squares fit with
equal weight to each point, slope 0.67 6 0.06 and offset 0.85 6 0.15.
The orthogonal linear regression, shown by a dashed line, has slope
0.99 6 0.08 and offset 20.01 6 0.21.

determined by means of the cup anemometer with those
obtained by means of the sonic. These comparisons are
shown in Figs. 10 and 11. Both ordinary least squares
fit and orthogonal linear regression has been applied to
the data points in these figures.

Again the identity lines seem to be consistent with
data.

4. Conclusions

The theoretical analysis of higher-order moments, in-
cluding the fourth order, of the cup anemometer signal
has shown that these, to a high degree of accuracy,
should be indistinguishable from the moment of the true
streamwise velocity component as observed through a
first-order, linear filter with the time constant t 0, char-
acterizing the response of the anemometer (at one par-
ticular mean wind velocity). A comparison with a sonic
signal seems to confirm this prediction.

In retrospect this is really not surprising. We know
from previous analyses (Kristensen 1998, 1999b) that
the asymmetric cup anemometer response is probably
unimportant for the overspeeding and that the mean of
the cup anemometer signal deviates from the magnitude
of the mean-wind vector by an amount that corresponds
to the difference between the distance an air particle
would travel along its path and the resulting distance
if, during the averaging time, the wind speed at any time
were the same in all points. Usually, this difference is
smaller than a few percent and it goes to zero when the
averaging time goes to zero. But the higher-order mo-
ments just represent identical, ‘‘instantaneous’’ fluctu-
ations around means that are almost the same. Conse-
quently, we should not expect that higher-order mo-
ments, not even higher than the fourth, to be affected
by wind direction fluctuations. Of course, nobody would
dare to make predictions on basis of these last qualitative
considerations. We had to go through the painstaking
analysis to feel confident with this conjecture.

It might seem that there is little motivation for at-
tacking this particular problem of studying higher-order
moments with a cup anemometer that, traditionally, is
mostly used for determining the mean-wind speed.
However, the results presented here show that the cup
anemometer may very well serve as an instrument for

studying the more detailed structure of atmospheric
flows, that is, the turbulence. Compared to the sonic
anemometer it has the advantage that it is omnidirec-
tional where the sonic has a very pronounced direc-
tionality. Usually the filtering properties of the sonic
anemometer are very complicated whereas the cup an-
emometer, with its velocity-independent distance con-
stant, filters the flow along a line in the instantaneous
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flow direction. Using the results of Kristensen (1998),
it is easily seen that a combination of a cup anemometer
and a wind vane, aligned vertically with one another,
can be used to measure and resolve the horizontal ve-
locity components of the turbulent wind field with a
spatial resolution equal to the distance constant. It is
accomplished by recording consecutively the duration
of each cup revolution and, at the same time, the in-
stantaneous wind direction. We see that the filtering is
spatial rather than temporal. This instrument combina-
tion can be augmented by a single-component sonic
anemometer, with its axis aligned with the cup–vane
combination, to include the measurement of the vertical
velocity component. At the end of each rotation period
of the cup rotor the signal from the sonic anemometer
should also be recorded and a suitable digital signal
processing applied to obtain the same first-order filtering
for all three instruments. The combined instrument is
omnidirectional and from that point of view superior to
the sonic anemometer. The spatial measuring domains
of the three instruments are vertically displaced about
0.5 m with respect to each other, but as long as the scale
of the turbulence is large compared to the displacements
this is of little consequence when measuring momentum
fluxes. The idea of combining cup, vane, and single-
component sonic has apparently never been suggested
in the literature, although it appears that the instrumental
axisymmetry and minimal flow distortion would be sig-
nificant advantages when comparing to the usual three-
component sonic anemometer.
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