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ABSTRACT

The behavior of the cup anemometer rotor in turbulent atmospheric flow is discussed in terms of a general
equation of motion. This equates the rate of change S of the rotation rate 3 of the rotor to a forcing F(5, h, W),
which is proportional to the torque and a function of $ and of the total horizontal and the vertical wind velocity
components, h, and W, respectively. To determine the so-called overspeeding, it is necessary to carry out first-
and second-order perturbation calculations around the response curve obtained in a laminar flow. From this
curve, which for the purpose of this paper can be considered linear, five constraints are derived between the
first and second partial derivativesof F. These constraints provide sufficient information for deriving an expression
for the overspeeding to which four distinctly different biases contribute—one for each of the velocity components
and one from the covariance between streamwise velocity components & and W. A phenomenological model of
F in terms of the response distance ¢, the distance constant L, a third instrument length scale A, and two
dimensionless constants u, and u,, defining the angular response, makes it possible to quantify the four terms
in the overspeeding expression. It turns out that the most significant bias in the mean wind speed is due to
lateral velocity fluctuations. Under certain conditions it may be larger than 10%. It is shown how it is possible
to reduce al the other biases to acceptable levels. The bias from the lateral velocity fluctuations can also be
suppressed significantly by combining the cup anemometer with a wind vane and using a signal processing

technique called the vector wind-run method.

1. Introduction

Probably the most common anemometers are the ro-
tating forms, cup, and propellers. One form or the other
is often used with awind vane for determining the mean
of the horizontal wind velocity component. Such com-
binations are sturdy and reliable instrument packages.
They are easy to operate and are used at weather sta-
tions, airports, wind farms, and sites where large struc-
tures, such as bridges, are under construction.

Here, we concentrate on providing a general descrip-
tion of the cup anemometer and its behavior in the tur-
bulent wind, with emphasis on systematic errors in the
measured mean wind speed. In this context thefirst thing
we consider is the so-called overspeeding, which, to
most people in observational meteorology, means apos-
itive bias of the measured mean wind speed. This bias
is a consequence of that property of the anemometer
that responds more quickly to an increase in the wind
speed than to a decrease of the same magnitude, so that
the rotation rate is spending more time on the high side
than on the low side of the mean. However, we shall
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see, not only streamwise but also lateral and vertical
velocity fluctuations contribute to the mean wind bias.

There is a vast amount of literature about the cup
anemometer that was invented as early as 1846 by the
Irish astronomer T. R. Robinson (Middleton 1969; Wyn-
gaard 1981) and that, in almost the same design, is still
in use.

Until the end of the 1920s the main subject discussed
in the literature was the linearity of the response curve,
that is, the relation between the wind speed U and the
angular velocity S of the cup rotor. Brazier (1914) and
Patterson (1926) demonstrated that the linearity is better
the shorter the diameter of the cup rotor is. Patterson
(1926) determined, for a number of cup anemometers,
the anemometer factor, which is defined as

U

= r_sl (1)

wherer istheradius of the cup rotor, that is, the distance
from the axis to the center of one of the cups. He found
that, depending on cup diameter and r the anemometer
factor varies between 2.5 and 3.5. [According to Mid-
dleton (1969), the inventor Robinson tried to calibrate
his instrument by mounting it on a carriage that was
moved with aknown speed under calm wind conditions.
Based on these measurements, Robinson believed that
he might have discovered a law of nature that says that
f is exactly 3 in the limit where the friction in the
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bearings is negligible. The validity of this law was not
generally accepted, and in 1872 F Stow (Stow 1872)
showed that *‘the law”” f = 3 could not be reconciled
with his experimental findings.]

In the 1920s interest turned toward understanding cup
anemometer dynamics and overspeeding due to wind
speed fluctuations. According to Kaganov and Yaglom
(1976), the first attempt to quantify overspeeding was
by Sabinin (1923), who used a simple dynamic equation
of motion, with a square-wave fluctuation added to the
mean wind speed as forcing. He was able to determine
the bias of the mean of the cup anemometer output and,
with these rather unrealistic assumptions, to calculate
the exact amount of overspeeding. Through the mid-
1970s, many theories and models of cup anemometer
dynamics and results from experimental determinations
of drag and lift forces on cups were published. Kaganov
and Yaglom (1976) and Wyngaard (1981) have both
given quite detailed account of thisliterature. One prom-
inent contribution came from Schrenk (1929) who, ac-
cording to Wyngaard (1981), was the first to suggest
and determine experimentally ageneral, three-parameter
expression for the torque on the cup rotor as a function
of the wind speed and the rotation rate.

Wyngaard et al. (1974) analyzed the situation and
found that none of the models of cup anemometer dy-
namics discussed so far were realistic enough for a sat-
isfactory determination of overspeeding. They pointed
out that a realistic model had to satisfy at least three
requirements: to be nonlinear, to include proper sensi-
tivity to both the horizontal and vertical wind compo-
nents, and to be able to handle variable cup geometry.
As a consequence they generalized Schrenk’s (1929)
approach and established a phenomenological model of
the anemometer equation of motion. This model, which
was quadratic in the turbulent velocity components and
the output signal, contained eight empirical constants,
and they showed how these constants for one particular
cup anemometer could be determined in awind tunnel.
Subsequently, Kaganov and Yaglom (1976) and, inde-
pendently, Busch and Kristensen (1976), were able to
quantify overspeeding on basis of this model. Later,
Coppin (1982) applied the technique devel oped by Wyn-
gaard et al. (1974) to describe, almost to the same detail,
seven different cup anemometers. Kristensen (1993)
summarized the results concerning overspeeding, point-
ing out that there are contributions from terms that are
proportional to not only the variances of the three ve-
locity components but also to the covariance between
the vertical and the streamwise velocity components.
However, this last contribution, which is included by
Kristensen (1993) for completeness, is, in general, small
and of little practical importance.

In the following we will derive expressions for the
four contributions to the overspeeding and, on the basis
of experimental data, give quantitative estimates of their
magnitudes. Also, we will suggest a phenomenological
model for the cup anemometer forcing in terms of its
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physical characteristics. A list of symbols can be found
in the appendix.

2. Cup-anemometer dynamics

We assume that the cup anemometer is mounted with
itsaxisvertical. In this case, the equation for therotation
rate of the rotor can be written as

§ = F[5 (0% + v9)¥2, W], 2
where {i, v, and W are the instantaneous horizontal and
vertical wind components, and 8 (rad s%) is the instan-
taneous rotation rate of the anemometer rotor. The an-
gular momentum of the rotor is proportional to $ and
(2) just states that the rate of change of the angular
momentum is equal to the net torque on the rotor. Con-

tributing torques are caused by the wind and by the
friction in the instrument bearings.

a. Calibration

The cup anemometer is usually calibrated in a wind
tunnel that is operated with wind speeds in the range
of interest.

In the steady state, with a constant horizontal wind
speed U and a constant rotation rate S, (2) reduces to

F(S U, 0 =S=0. (3)
Solving (3) for Swe obtain the response equation
S = gU). (4)

It is a well-known experience that the cup anemometer
has a steady-state response curve that, for most purposes
can be considered linear, that is, d?S/dU? = 0. This
means that we can write (4) as

S= (U - Uy. (5)

Here U, is a positive offset speed. It is no more than
about 0.1 m s~* for a good cup anemometer. Often it is
called the starting speed, but thisis really a misnomer;
when the wind speed is very small—less than 1 m s,
say—the contribution to the total torque from the fric-
tion in the bearings becomes significant and the response
expression is no longer close to being linear. The real
starting speed will, in general, be larger than U,.*

The quantity ¢ is a length scale that, when U > U,,
can be visualized as the length of the column of air that
has blown through the anemometer when the rotor has

L1t is extremely difficult to calibrate a cup anemometer when the
wind speed is less than 0.5 m s~ This is because the speed aways
fluctuates in a wind tunnel and because very small wind speeds are
difficult to determine by means of standard wind tunnel equipment
(Pitot tube). It is therefore not, in general, possible to judge whether
the response Sto U is the same when U is increasing as when it is
decreasing. In other words, whether the ** stopping” speed is the same
as the starting speed.
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slope = l/f
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Fic. 1. The solid line represents the actual response and the dotted
line is the linear expression (5). This line has the slope 1/¢ and
intersects the U axis at U,. The real response intersects this axis at
a somewhat higher value. The response curve approaches the as-
ymptote given by (5) in the limit U — oo. We have indicated the
domain in U where the linear response is assumed to be accurate
from a measuring standpoint.

turned one radian. We shall call it the response distance.
Figure 1 is a sketch of the cup anemometer response.

b. Perturbation analysis

In operation the cup anemometer will be exposed to
awind velocity that fluctuates in magnitude and direc-
tion. We assume that the mean wind velocity is hori-
zontal and that the fluctuations are small compared to
the mean wind speed U. We decompose the instanta-
neous wind velocity and the anemometer response as

Eéﬁ DS+SE
D?D=IZI +UD, (6)
0 0¥ [
oMo O W O

where Sis defined by (4).

Theway in which 3isdecomposed does not guarantee
that the average (s) is zero; in fact, (s) # 0 is a mani-
festation of overspeeding.

First, we derive afirst-order perturbation equation for
the rotation rate in u, v, w, and s. Substituting (6) in (2)
we get

5= Fis+ Fu + Fiw, (7
whereF; = dF/o{arg posi} aretaken at the point [S(U),

U, 0]. We note that there are no terms proportional to
v since

@ + ?)%2 = [(U + u)? + v?]¥
~ U + u+ vi(2U). ®

The first term containing v in the expansion of (P +
7?)¥2 is proportional to v? and must be included in the
second-order perturbation equation.

The three coefficients F;, FJ, and F; in (7) are not
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independent but interrelated through (3). Since, accord-
ing to (4) and (5), S is a function of U, we have
ds 1

F;m + F, = ZFQ + F,=0. (9)
Inspecting (7), we see that F; with aphysical dimension
of reciprocal time must be negative since perturbations
cannot grow exponentially. We define the time constant
as

1

To = _F_i (10)
and, substituting in (9), we get
1

F,= . 11

2 (Tof) ( )

If the cup anemometer were equally sensitive to the
perturbations u and w, then F; would be equal to F,.
On the other hand, if it were ideal and not sensitive to
w at all, then F; would be zero. We account for the
deviation from the ideal response by writing

Fl = M

T 0 4

and rewrite (7) as

s, S _u w
'ulﬁfo'

T L7
If w, is significantly different from zero, it will affect
the operation of the cup anemometer if it isnot mounted
correctly with vertical axis. To see this, let us consider
a situation where the mean wind has a small component
W along the axis. In this case (3) must be replaced by

F(S U, W) = 0. (14)

Since |W| <« U, we can just replace 059U by dSdU =
1/¢. Differentiating with respect to W yields

(13)

aS
From (10) and (13) we conclude
0S
— =2 1
ow ¢ (16)

In other words, w, is a dimensionless parameter char-
acterizing the first-order response to the vertical wind

component.
Since dS9U and 9S9W areindependent of U, weinfer
92S 92S
— = = 1
auz  gUawW (0

However, there are no a priori reasons that the second
derivative of S with respect to W is zero.

Equation (13) shows that the cup anemometer can be
considered a first-order linear filter if quadratic terms
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ins, u, and w can be neglected. Because of the linearity
it predicts that (s) is zero, that is, that there is no ov-
erspeeding. Therefore, we must expand (2) to second
order in s, u, and w. The result can be written as a
generalization (13) in the following way:

u w1
{ry,  {€1,2U

1
+ E{ngu2 + 2Fuw + Fiw?}

1
+ E{FLSZ + 2F,su + Fywst,  (18)

where F{ = 92F/o(arg pos i)d(arg pos j) at the point
[S(U), U, Q]. Again, the relation (14) provides con-
straints between the coefficients. There are three that
are the results of differentiating (14) twice with respect
to both U and W, keeping S = S(U, W) a function of
U and W. They are

’ 1 " 1 "
F’nﬁ + 2F122 + F5, = 0, (29)
FH & + FH & + FN 1 + FH = 0 (20)
1162 12 € 31€ 23 ’
and
S, | oo Y ,
aWZF1 + Fne—; + 2F31?1 + F, =0 (21
We introduce the parameter
92S
M2 = €U8W2 (22

and, keeping in mind the definition (10), rewrite (21)
in the form

" M’f " ! "o Mo
FllZ + 2F317 + F3 = U7-0€' (23)
It is useful to consider exactly how the two parameters
u, and u, are related to the angular response of the
anemometer. We define the angular response function
g(U, 9) for agiven wind speed as the ratio of the output
S + s, when the wind vector U forms the angle J with
the rotor plane. The output Swhen 4 = 0 is
(S+sy) Sy
Ud)=—F—"=1+ =2,
9(U, 9) S S
where s, is the output increment for a given value of
J. In Fig. 2 a cup anemometer is mounted for the de-
termination of the angular response. We consider ¢ pos-
itive if the projection w, of U on the anemometer axis
points away from the bulky part of the anemometer
body.
Denoting the projection of U on the rotor plane U +
u, and considering only small angles (¥ < 1), we have

(24)
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FiG. 2. Cup anemometer mounted in awind tunnel with the purpose
of determining its angular response characteristics. As indicated,
is positive in this case.

,82
u, = U cos(d) — U = —U? (25)

and

w, = U sin(d) ~ Ud. (26)

We may determine s, to the first order in ¥ by substi-
tuting (25) and (26) into (13), which yields

Si= pg 9 + O(99), @
where O(x) means of order x.

Similarly, s, to the second order in 9 can be deter-
mined by means of (18). Again, substituting (25) and
(26) and, in addition, the first-order result in (27), we
obtain

€sy = Uy + W,
L [
O(9?) o(9)

%
+ 70{ F,2’2u§ + ZFZSUﬁWﬁ + Fg3W§}
\ | ! I L !
0(94)

o(8?) o(9?)

T
+ 70{‘F€L/13§‘ + \2ngsﬂual + IZFglwﬂsﬂ‘}

o(92) o(9?) o(92)
,8»2
~ uw,Ud — U?
n M2 n M n 192
+ UZET()(Fllg—; + 2|=317l + F33>?
2
=Ulmd - (1 - /Jvz)? ) (28)

where we have used the constraint in (23). According
to the definition in (24) we now find
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U 9?
U— UolJvlﬁ_ (1 - Mz)?-

An ideal cup anemometer responds only to the wind
components in the rotor plane, and this means that

U cos(¥)

gUu, 9 =1+

(29)

S+s,= U, I = f_u" (30)
o, sinceS= (U — Uy,
1}2
Ull + w9 — (1 — ,uz)? = U cos(9). (31

Since cos(¥) = 1 — 9%2 to the second order in 9, (31)
implies that for an ideal cup anemometer u, = wu, =
0. This is not the case for a real cup anemometer, but,
based on the experimental determination of the angular
response of the Risg cup anemometer (Busch et al.
1980), it seems reasonable to assume that u, and u, are
independent of wind speed.

c. Experimental determinations of the expansion
coefficients

At this point it will be appropriate to introduce the
model of Wyngaard et al. (1974). They normalized the
perturbation variablesas s’ = §/S U’ = u/U, and W' =
w/U and formulated the second-order expansion as fol-
lows:

s + 7,8 = au + aw + as?+ au'?+ aw'?

+ as'u + a,uw + agw's, (32)
where the term corresponding to lateral perturbations v’
= v/U was omitted since it was not relevant in their
study. They were able to determine the eight dimen-
sionless coefficients in (32) for a particular cup ane-
mometer by means of a wind tunnel in which they let
the rotor have a different angular velocity than that cor-
responding to the flow velocity and at the same time
measure the torque on the rotor. By tilting the cup axis
they produced a pseudovertical velocity component and
so determined a,, as, a,, and a,.

Wyngaard et al. (1974) found a, = 1.03 = 10%.
Assuming that this means that a, = 1 within the ex-
perimental uncertainty, we conclude, by comparing (32)
with (18), that U/(U — U,) = a, = 1; that is, that we
may consider U, = 0. With this simplification we can
identify the two equations, term by term, and write the
result of Wyngaard et a. (1974) as

Ua, U 0o 0 1.03 = 10%U
a, M 0.06 £ 0.1
]a3 } UTO/(2€) }0.23 + 10%
Da45 - UTy€l2 5: - 0.96 + 10%EI (33)
as_ 1UTell2 067 = 0.1 _
3 FL.UT, 0.73 = 10%
ar | FoUtyf i 0.04 £ 01 i
;0 o FuUr, o 0012+ 0.1 g

KRISTENSEN 9

TABLE 1. The result of the Coppin (1982) measurements on seven

anemometers.

Type a a, a, a, a,
Friedrichs 1.27 000 110 085  -117
Siggelkow 118  —005 1.03 090  —0.90
Teledyne 3 125  -019 111 082  -086
Teledyne 6 126  —-020 115 047  —0.89
Gill 3 122 -020 114 =0 ~0.79
Casdlla 119  -029 098 =~ —0.69
Thies 118  -011 118 095 -126

The left equation, together with the constraints in (19),
(20), and (23), and the assumption that a, = 1, implies
the following relations between the coefficientsin (32):

8, +a ta=0 (34)
a,(2a, + a5) + a, + a; = 0, (35)

and
aza, + a,a; + ag = w,/2. (36)

We note that (34) and (35) are fulfilled well within
the experimental errors by the right equation of (33).
The left-hand sides of those two equations become 0.00
+ 0.12 and —0.15 = 0.19, respectively.

In al theoretical models it has been assumed that the
forcing F on the rotor is a second-order polynomial in
its variables, that is, the wind velocity and the rotation
rate. It is easily seen that, to the extent we can neglect
the starting speed U,, the time constant given by (10)
is inversely proportional to the wind speed U and all
the second derivatives of F are independent of U. The
first implication is that not only a, and a, but all the
constants a,, . . ., ag are independent of U, the second
that the so-called distance constant

L = U~ (37)
is a true instrument length constant just as the response
distance €. Practical experience with cup anemometers
confirms that L is independent of U.

The Coppin (1982) results are shown in Table 1. This
investigation is somewhat limited since a,, a,, and a,
were not determined for the seven different cup ane-
mometers. Further, in all cases a; seems to be signifi-
cantly different from unity, implying that thewind speed
is so low that a, = U/(U — U,) cannot be considered
independent of U which, in turn, means that (34), (35),
and (36) should be generalized accordingly. Even then
(34) seems reasonably well fulfilled, and we note that
in al cases a, is negative, just as stated by Wyngaard
et a. (1974).

We see that the four instrument constants ¢, L, u,,
and u, are important to characterize the response, the
(spatial) filtering characteristics, and the angular re-
sponse of the cup anemometer.



10 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

d. Overspeeding

Now we have the tools to quantify the overspeeding.
Taking the average of (18) and assuming U, = 0, we
obtain the expression for the relative overspeeding

) 2y LL u? uw, w?
& _ W i, W) e, W, W9
S 202 2\ e u? u?
L /FY, (s su ws
s E(EE 2F12Q + 2|:'3'1u . (39
2\t & U Sy

where we have used (37). To evaluate the right-hand
side we must know not only the variances (u?), (v?),
(w?), and the covariance {uw) of the turbulent wind but
also the variance (%) of the anemometer response and
the covariances (su) and (ws). We have to apply a boot-
strap operation to resolve this dilemma and use the so-
lution to the first-order equation (13) with the initial
condition s(—«) = 0:

-2 e+ - e L @
Now we get
1(" dr
@ =1 R+ wrae L @

and

dr

o =2 [ R + Rt L

0

where we have introduced the covariance functions
R(7) = (u(t)u(t + 7)), R(7) = W(OW(t + 7)), and R,,(7)
= (u(t)w(t + 7).

At this point it seems more practical to rewrite the
last two equations in terms of the wavenumber spectra,
F.(k) and F,(K), and the cross spectrum F (k) = Co(k)
+ 1Q(K), where Co(k) and Q(k) are the co- and quad-
rature-spectra, respectively, employing Taylor's*‘ frozen
turbulence’” hypothesis to convert integrals over fre-
quency to integrals over the wavenumber component k
in the flow direction. The definition of a spectrum is

Fﬁ(k) = %f

o

R,(r) exp(~ikU7) dr,  (42)

where B = u, v, W, Or uw.

Once (suy and (ws) are determined, (s?) is easily ob-
tained by multiplying (13) by s and averaging, keeping
in mind that 2(s5) = d(s?/dt = O:

(&) = (su) + uws))/e.

Rewriting (40) and (41) in terms of the spectra and,
subsequently, applying (43), we obtain

(43)
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! M? J m w dk, (44)
! % f °° % dk, (45)
and

P J * 2Co(K) dk 46)

€2 ) 1+ keL?’
Inserting in (38), using the left equation of (33) and
combining with (34), (35), and (36), we obtain, after
some manipulation,

®_@), & r KL,

S 2uz U2z 1+ keL2
| — L
A B
as |~ k2L2F,(K) w, |7 Fu(K dk
+ = —— W ik + 2 —wa
uz Jm 1+keLz 7 202 ) 1+ keL?
c D
* k2L2Co(K
3 |- kLcol) o
Uz | 1+ kL2
L |
5
— “ KLOQ(K
+ azaaz asj . Qk(2|)_2 dk.
\ = * J (A7)

This quite general result was obtained by Kristensen
(1993). However, the second term (B), which hasalways
been considered the most intriguing, was obtained al-
ready by Kaganov and Yaglom (1976) and Busch and
Kristensen (1976). This term is what is usually consid-
ered overspeeding but, as we shall see, it is seldom the
most important bias. The first term (A) is the contri-
bution to the bias caused by the wind direction fluctu-
ations. The terms C and D are both proportional to the
variance of the vertical velocity component W. We see
that term C is essentially proportional to the variance
from wavenumbers larger than the reciprocal of the dis-
tance constant L, whereas term D is the contribution
from W variance at wavenumbers smaller than 1/L.
Equations (33) and (36) indicate that u, = 2a, so that,
at least approximately, the sum of terms C and D be-
comes ag(W?)/(2U2). Terms E and F are proportional to
the covariance of 0 and W at high wavenumbers. Term
E isthe “in-phase’” and term F the ** out-of -phase’” con-
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tribution. Both terms are probably small, judging from
(33).

3. Phenomenological forcing model

Instead of stating the result (47) by means of the
parameters a,, . . ., a;, we may wish to formulate this
result in terms of “‘physical’ parameters characterizing
the cup anemometer. This can be accomplished by pos-
tulating a model of the forcing on the cup rotor. We will
assume that the friction in the bearings can be neglected
with the implication that U, can be considered zero and
that the entire forcing is due to the wind. Further, the
model should take into account what we know of the
instrument response and the first-order response char-
acteristics to a change wind speed.

Leaving out for the moment the vertical velocity com-
ponent and introducing for convenience the notation

F] — (02 + ;)2)1/2 (48)

for the instantaneous, total horizontal wind speed com-
ponent, we hypothesize, along with many others (see,
e.g., Kaganov and Yaglom 1976), aform of the function
F(3, h, 0) based on the assumption that the torque of
the turbulent wind is a homogeneous second-order poly-
nomial in § and h. We add the constraint that one of the
two roots in F(S, U, 0) = 0is S = U/¢ [(5) with U, =
0] and exclude the possihility that S = U/{ is a double
root because this would imply that F;(S, U, 0) is zero,
corresponding to an infinite timescale 7, according to
(10). All this suggests the following form:

FG h, 0) = —pC—(h — ¢3)(h + A%). (49)
Here, C is a dimensionless constant; p, the density of
air; A, an effective cup area; r, an effective radius of
the cup rotor; and |, its moment of inertia. The quantity
A is someinstrument length scale. If it is positive, there
isonly one positive root in F(S, U, 0) = 0, namely, that
corresponding to the response. Later we will argue, on
basis of the measurements by Wyngaard et al. (1974)
and Coppin (1982), that A is indeed positive.

The first useful result we can derive from (49) is an
expression for the time constant 7,, which weintroduced
with (10). Taking the derivative with respect to §, we
get

-1 1 2
F/  UpCAr(( + A)

We note that the time constant is inversely proportional
to U with afactor of proportionality that is determined
entirely by the density of air and of the rotor material
and by the rotor geometry. Therefore, we get the ex-
pression

(50)

Ty =

2l

L=Ur=————
o7 JCAr(f + A)

(51)
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for the distance constant that, since it does not depend
on the wind speed, is a true instrument constant. The
fact that a cup anemometer response is characterized by
a distance constant rather than a time constant has been
confirmed experimentally (MacCready 1965).

Since the moment of inertia | is proportional to the
rotor density p, and to the fifth power of its linear di-
mensions (e«r), we conclude from (51) that the distance
constant is proportional to p,/p and r?/(¢ + A). The
response distance ¢ is independent of the moment of
inertia—that is, of the density of the rotor material—
and determined entirely by the rotor geometry. It is
proportional to r and usually of the same order. If we
assume that A scales with r, just like ¢ does, we con-
clude that the distance constant is proportional tor. The
rotor of the Risg-70 model (Busch et al. 1980) is made
of carbon reinforced plastic with a density p, of about
1.5 g cm=3 The radius r is 0.07 m and the distance
constant L was determined to be 1.7 m. Thisis arather
typical modern, sturdy cup anemometer, which is used
for routine measurements of mean wind speed by Risg
National Laboratory. Older models are typically made
of steel and they are often larger, with radii of about
0.15 m. They have distance constants of about 20 m
and consequently react much slower than newer models
of standard cup anemometers. The smallest distance
constant is reported by Frenzen (1988). His miniature
instrument, which is designed for turbulence measure-
ments and is quite fragile and unsuited for routine op-
erations, hasL = 0.25m. Therotor is made of styrofoam
and has a radius of only 0.01 m.

Applying (51), the forcing function may now be re-
written as

(h — €3)(h + AY)
L€ + A)
We see that the forcing by the horizontal wind can be

specified by means of the three length scales: ¢, L, and
A. From the left equation of (33), we get

FG h 0) = (52)

n D
Fll

Oa, 0 2 € H€+AH

a0 EF” 53
Ha,0 = — [

Ha.g (53)
="

% LD [U_ U

o ¢+ An

The data in (33) by Wyngaard et al. (1974) and those
by Coppin (1982) show that in all the cases a, is never
positive, a, isaways positive, and a, is always negative.
Assuming this to be the case in general, (53) implies
that ¢ + A > 0 (since a, > 0 and ¢ > 0) and, con-
sequently, that A = 0 (since a; < 0). Further, since a,

< 0, we conclude that £ > A and that
a, < 1L (54)

This inequality is, according to (33), fulfilled by the
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data by Wyngaard et al. (1974). Coppin (1982), on the
other hand, found that six out of the seven anemometers
he investigated had values of a, larger than 1. At the
same time he found that a, was larger than 1 by about
0.2 for all seven anemometers. Our model predicts that
a, is exactly 1 and that the only possible way to un-
derstand the results by Coppin (1982) in our framework
is to accept that the offset speed U, is significant. It is
possible to take U, into account in our model, and one
consequence of this generalization is that a, must be
divided by a2 before comparison with the inequality in
(54). When this ““normalization’ is carried out, all his
values of a, fall well below 1.

We see that the model fulfills (34). However, our
model predicts still another constraint:

a, —a; =1 (55)

The data given by Wyngaard et al. (1974) show that a,
— a;, = 1.19 = 14% and those from Coppin (1982)
show corresponding values between 1.08 and 1.29.

Inserting (53) in (20) and (23), these relations take
the forms

1., o M
EFSl + F = f_L (56)
and
My o o pi 2A
2—F! + Fl =— 4+ — . 57
¢ oL oLe+ A S

It is tempting to formulate a model for the torque that
includes the dependence on the vertical velocity com-
ponent w. We will do it by securing that the constraints
in (56) and (57) are fulfilled.

We note, by looking back at, for example, (13), that
a small vertical wind component W has the same effect
on the rotation rate as the increase u, W in the horizontal
wind component. The first thing to do would therefore
be to replace h in (52) by h + w,W. This is sufficient
to fulfill (56), but not (57). To accomplish that, without
violating (56) or any other constraints we have used, all
we have to do is to add a term proportional to W2, It is
easily seen that the expression

F(3 h, W)

(h + W — €3)h + i + A3 u, W2
= +
L(¢ + A) e 9

meets all our requirements.

With this equation for the torque we can now establish
the complete translation table between the coefficients
a, ..., 8 and the model parameters. Carrying out all
the differentiations of F($, h, W) to second order and
then setting (5, h, W) = (U/¢€, U, 0), we get the result
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O 1 O
o1 0 My
O, 0 m M1 m __A
o L €+ A
, nt
a 2 ¢ ¢
oL €+ A
Ta,n AL 2
0'o=02 0= mt + P (59)
S FL o U+ A 2
& | Myt (- A
_a7_ F7L {+ A
0agO F7213€L 2[.L1€
T ¢+ A
F5L
SRR N R
'ul€ + AQ

This phenomenological model shows that the dynamic
behavior of a cup anemometer can be described to sec-
ond order in perturbations around a response point (S,
U, W) = (U/¢, U, 0) by five independent parameters.
The four traditional parameters are specified as the re-
sponse distance ¢, which specifies the translation from
signal to wind speed; the distance constant L, which
characterizes the low-pass filtering of the anemometer;
and the two dimensionless parameters ., and w,, which
account for the sensitivity to the vertical wind com-
ponent. They can be obtained by use of alow-turbulence
wind tunnel. This is obvious where €, w,, and u, are
concerned. The distance constant L can be determined
by holding and releasing the cup rotor in a constant
wind. The fifth parameter, the length scale A, isdifficult
to interpret. It does not manifest itself in the steady-
state response or in the first-order dynamics as is the
case with the other four parameters. The model aso
predicts the following constraints:

a3 — 3 = 0, (60)

and
2a,a, — a, = 0,

(61)

which are both consistent with the results (33) by Wyn-
gaard et a. (1974).

a. Reformulating the overspeeding

We may now formulate the general result (47) by
means of (59). We note that, by virtue of (60), the last
term containing the quadrature spectrum disappears, and
we obtain for the relative overspeeding é = (s):
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+ = | = gk
Peouz T auz ) 1z
5.
2mt 1 J * k2L2Co(K)
CHAu) e 62)

Ok

where we have written the entire bias 6, that is, over-
speeding, in terms of four distinct types of biases, name-
ly, three related to each of the velocity components and
one to the covariance between the velocity components
u and w.

We see that the u bias, 6, is aways positive and
proportional to the variance of u after afirst-order high-
pass line filtering along the direction of the mean wind
speed with a length constant equal to the distance con-
stant. There is a straightforward interpretation of this
result: The cup anemometer is fast enough to resolve
correctly the contribution to the mean wind from eddies
larger than the distance constant L; the smaller eddies
will give rise to a positive bias.

In contrast to §,, the v bias, 6,, gets contributions
from the v variance at all wavenumbers.

Thew bias, §,,, can be written as a sum of two terms;
the first proportional to the entire w variance and the
second, which is never negative, to the high wavenum-
ber part of the w variance. We see that the first term,
which has the same sign as w,, is similar to the v bias
and the second to the u bias.

Finally 6., which we will term the stress bias, is
proportional to the high wavenumber part of the cos-
pectrum of u and w.

b. Quantifying the overspeeding

If L issmall compared to the scale of the turbulence,
and this means essentially small compared to the height
z of the measurement, we may assume that the turbu-
lence is locally isotropic and, according to many re-
searchers, for example, Kaimal et al. (1972) and Wyn-
gaard and Coté (1972), given by

Ful) = eIk, (63)
2a,
Fulk) = e 7lk| 2, (64)
and
= _éd_u 1/3] =7/3
Co(K) L (65)

Here, o, = 0.56 (Kristensen et al. 1989) is the Kol-
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mogorov constant, and ¢, = 0.15 is a corresponding
dimensionless constant for the cospectrum. The rate of
dissipation of specific kinetic energy e enters in both
spectra. In addition, the cospectrum contains the wind
shear dU/dz as a factor.

Theintegralsin (62) can therefore easily be evaluated,
but, inspired by (33) and by experience with the Risg
anemometer (Busch et al. 1980), we assume that u, =
a, = 0, so that the only integrals to be evaluated are
those pertaining to 6, and 6,. We get

T € (L)
8, = —a—— 66
TNV A U2 (66)
2 1
™2t LAY e 67)

% = T 50+ AUtz

If the atmospheric surface layer is neutrally stratified,
it is quite easy to formulate the four biases in terms of
the surface friction velocity u, and z. Since dU/dz =
U,/(k2), and e = U3/(x2), k = 0.4 being the von Karman
constant, and since, according to the summary by Pa-
nofsky and Dutton (1984), (u®)/u; = 5.7, (v®)Iu; =~ 3.7
and (W?)/uz = 1.7, we get

5, = a4%alt’)—i<%z)m ~ 2a4(§)%3—i, (68)

5, = %Z ~ 28—52, (69)

8, = Mzg"(‘jﬁ ~ 1.5a55—*%2, (70)
and

8 = —&%&B—i(i)m ~ —&(E)ma—i, (71)

where we have used the translating table (59) to ex-
press—for convenience—the result in terms of the a
coefficients by Wyngaard et al. (1974).

As stated by Frenzen (1988), a cup anemometer can
be constructed to have ideal angular response, that is,
= u, = 0 for a wind inclination within =20°. In
that case, (59) showsthat a; = 0 and a, = 0. Thismeans
that 8,, and &, can be neglected for such an anemometer.
The coefficient a, of the u bias must always be positive;
otherwise, the cup rotor will not start, as can easily be
seen. However, by making the distance constant L small
enough, 6, can be reduced significantly. For example,
if we assumethata, ~1,L=2m,z = 0.05m, and
z = 10 m, then §, = 0.4%, whereas 6, = 1%.

The situation changes dramatically if we go from a
neutral to a strongly unstable stratification. Kristensen
(1993) determined the four biases in a horizontally ho-
mogeneous, unstably stratified atmospheric surface and
showed that 6, could conceivably be as large as 18% at
z = 5.66 min the Kansas experiment (Kaimal and Wyn-
gaard 1990), whereas the other biases probably did not
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exceed about 2% (8, about —0.01%) under the same
circumstances. Thisis intimately connected to the facts
that 6, and &, contain a weighting factor (L/2)”, where
v is 2/3 in the first case and 4/3 in the second, and that
the variance of w is length-scale limited in contrast to
the variance of v (and u).

c. Suppressing the overspeeding
In the preceding section it was shown

1) that 8, is usually small, and that the key parameter
to its further reduction is the factor (L/2)%3;

2) that §,, islimited because the variance of wislimited
by the turbulence scale that, in turn, is proportional
to the height z, and that this bias can be reduced by
designing the cup anemometer such that w, is close
to zero; and

3) that 6, is generally small mainly because of the fac-
tor (L/2)*3, but also because for most cup anemom-
eters u, is small.

However, the v bias cannot be reduced by an appro-
priate anemometer design. In away 6, is not a bias at
al if we were only considering the mean of the wind
speed and not the magnitude of the wind velocity vector.
The last interpretation is prevailing and, consequently,
we must look into the possibility of reducing 6,. For-
tunately, it seems that this can be accomplished by a
data processing that, by use of a wind vane, takes into
account the actual fluctuations of the wind direction.

If there were no wind direction fluctuations, we could
determine the mean wind speed over the period T by
counting the number N of revolutions. Then, assuming
that the offset speed U, negligible, the mean wind speed
would be given by U = 27¢ X N/T since N air columns
of length 277¢ has run through the anemometer in the
time T. If there are wind direction fluctuations, we rec-
ord, instead of *‘counting one,” the instantaneous angle
of direction ¢ every time the rotor has turned one full
revolution. Then we can, after the elapse of thetime T,
obtain the mean vector wind by

(72)

0w .o
{UE} ) 2_7765121 COS(d)i)g
RSPl

The procedure is illustrated graphicaly in Fig. 3. The
mean wind velocity and direction are now given by

U= VUZ + U3} (73)
and

- Uy

(P) = arctan(U—E>. (74)

This procedure reduces 6, significantly since is corre-
sponds to a high-pass filtering of the fluctuating, lateral
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Fic. 3. lllustration of the vector wind-run method. The orientation is
such that the direction is measured counterclockwise from the east.

velocity component. The **apparent” variance of v that
enters in the expression for §, is given by
sin(27k()

(V) p = 2 Jx {1 i }Fv(k) dk, (75)

where F (K) is the spectrum of the lateral velocity com-
ponent. Using this signal processing, we have reduced
what MacCready has called the DP-error (for data pro-
cessing error) (MacCready 1966). We note that the char-
acteristic length constant in (75) is the response distance
€. Since this quantity is less than the distance constant
L, we can, to an even better approximation than that
used in the derivation of (66) and (67), assumethat F (k)
is given by the inertial subrange expression. Thisisthe
same as that for F,(k) in (64), and the v bias becomes

_ (e
o= e
8 (2mel)?s
- 30 870% (e - ange e
_ 3oz (L), 0% _ 5,0
—5(277) F<3>al e 10
aofl) -

We conclude that 6, now becomes smaller than even §,
if £ <L < z Figure 4 shows graphically the relative
importance of the various biases, §,, 6, 6,, and &,
together with &, after the signal processing introduced
by (72). Kristensen (1993) pointed out that, as a bonus,
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Fic. 4. The relative biases given by (68) through (71) (solid lines)
and (76) (dotted line), normalized by (u,/U)?, as functions of the
ratio of the height z and the distance constant L. The actual values
of a,, a;, and a, are taken from Wyngaard et a. (1974) [see (33)],
and we have assumed the typical values of the response distance ¢
= 0.2 m and the distance constant L = 2 m.

also the wind direction variance can be obtained using
this procedure. By expanding {(cos(¢))? and (sin(¢))?in
the deviation 8¢ from (¢), a simple analysis shows

(8¢?) = 1 — (cos(¢))* — (sin(¢))* + O((8¢?)?). (77)

4. Conclusions

The cup anemometer has been used for more than
100 yr for routine measurements of the wind velocity.
It has turned out to be a very reliable and sturdy in-
strument, easy to install and operate, with awind-tunnel
calibration that is linear, usualy within £0.05 m s
Further, since it is axisymmetric, it need only be aligned
once, namely, at the installation with its axis of rotation
vertical.

Using the wind-tunnel calibration in turbulent envi-
ronment, the mean wind velocity will usually be over-
estimated. This bias will increase with increasing vari-
ance of the three velocity components: T in the mean
wind direction, v in the lateral, and W in the vertical
direction. In addition, there is a bias related to the co-
variance between @i and W that, depending on the first-
order angular response, can be either positive or neg-
ative. This bias 8,., which is proportional to the ratio of
the cup anemometer distance constant and the measur-
ing height to the power 4/3, is usually extremely small
compared to the other three biases: the u bias, the vbias,
and the w bias.

Much effort has been invested in quantifying over-
speeding. In an analysis of the Kansas experiment (Kai-
mal and Wyngaard 1990), it was decided, on basis of
an investigation by Izumi and Barad (1970), that the
overspeeding was a flat 10%, whereas Kondo et al.
(1971) in their analysis concluded that it was quite
small; in the worst case, it was less than a few percent.
It was very important for the wind-profile measurements
in Kansas to measure the wind vel ocity with an accuracy
of about 1%. This was the situation when Kaganov and

KRISTENSEN 15

Yaglom (1976) and, independently, Busch and Kristen-
sen (1976) were able to, on the basis of the empirical
model and data by Wyngaard et al. (1974), derive a
theoretical expression for the u bias as a function of
distance constant L and the scale and the variance of Q.
Kaganov and Yaglom (1976) also derived an expression
for the w bias.

Later, the discussion seemed to lose its momentum
until the wind-energy community stated stiff require-
ments concerning the accuracy of the determination of
the mean wind speed. As the horizontal flux of wind
energy is approximately proportional to the cube of the
mean wind speed, an error in this quantity might cause
an error three times as large in estimates of wind-energy
power. With this in mind, it is easy to understand why
it isimportant to measure the mean wind speed to within
a fraction of a percent when the power curve of awind
turbine has to be specified to the accuracy assumed in
the circles of manufacturers, consumers, and lawyersin
the wind-energy business.

Here, we have analyzed a general, phenomenol ogical
model, equivalent to that by Wyngaard et a. (1974),
apart from the influence of the lateral velocity fluctu-
ations. We have shown how the linear response leads
to certain constraints on the coefficients in a first- and
second-order perturbation analysis of the phenomeno-
logical equation of motion and to a general equation for
overspeeding. An alternative phenomenological model,
formulated in terms of the angular response parameters,
the response distance, and the distance constant, yielded
further constraints, reasonably consistent with the mea-
surements of Wyngaard et al. (1974) and Coppin (1982),
and resulted in a less general, but simpler, expression
for the overspeeding. On basis of this model, we con-
clude that cup anemometers can be designed such that
the u bias and the w bias are always less than about
1%. However, it takes special signal processing, in-
volving a wind vane, to reduce the v bias or DP error
to this level.

It must be emphasized that the overspeeding phe-
nomenon is only relevant when we discuss the mean
wind speed. It is possible to use a cup anemometer for
measuring the fluctuating, streamwise velocity com-
ponent with a spatial resolution that corresponds to al-
most that of a sonic anemometer. Frenzen (1988) has
designed a cup anemometer with a distance constant of
about 0.25 m and with an almost ideal angular response.
For turbulence measurements this instrument can be
considered a first-order line filter obeying the equation

db,s_u (78)
dx L €L

Finally, it should be pointed out that the phenomeno-
logical model postulated here might be modified to de-
scribe the motion of a propeller-vane anemometer. In
this case the anemometer length scale A should be set
equal to infinity. Kristensen (1994) quantified the ov-
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erspeeding and found that this anemometer has no u
bias, that the v bias and the w bias are the same as those
of the cup anemometer, and that there are two more
biases to consider. First, the vane is always lagging be-
hind the instantaneous wind direction so that this is
never perpendicular to the propeller plane of rotation.
Second, the vane is causing the propeller to move with
respect to the air.

APPENDIX
List of Symbols

A Effective cup area

a,,...,as Perturbation equation coefficients

C Dimensionless constant of order one

Co(k) Cospectrum of u and w

f Anemometer factor

F Total forcing on the cup rotor

F/ Partical derivative of function F with re-
spect to its ith argument

Fi Partial derivative of function F with re-
spect to its ith and jth arguments

F.(K One-dimensional spectrum of u

F.(K One-dimensional spectrum of w

g(u, 9) Angular response function

h Instantaneous, horizontal wind velocity
component

I Moment of inertia of cup rotor

€ Response distance

k Wavenumber component along the x axis

L Distance constant

N Number of cup rotor revolutions during
time T

Q(K) Quadrature spectrum of u and w

r Radius of cup rotor

R.(7) Autovariance function of u

R(7) Autovariance function of w

Row(7) Autovariance function of u and w

(S I nstantaneous anemometer response

S Anemometer response to constant wind
speed U

S §—-S

s §/S

S Time derivative of $ with respect to time t

S Time derivative of s with respect to time t

Sy Anemometer response increment for tilt
angle ¥

t Running time

T Averaging time

(@, v, W) Instantaneous wind velocity vector in (X,
Yy, Z) coordinate system

U Horizontal mean wind velocity component
along the x axis

U, Offset speed

W Vertical mean wind velocity component

along the z axis
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Ug, Uy East and north component of mean wind
velocity, respectively

(U, v, w) @ — U,y W

(u,v,w") (uU, v/U, w/U)

(V) aop Apparent variance of v

Uy Increment of velocity component in the
plane of the cup rotor for tilt angle ¥

W, Velocity component perpendicular to the
plane of the cup rotor for tilt angle ¥

u, Surface friction velocity

XY, Z Ground-based Cartesian coordinate system
with the x axis in the direction of the
mean wind and the z axis vertical

a; Kolmogorov constant

o Total relative overspeeding

oy u bias

0, v bias

Sy w bias

O, Stress bias

€ Rate of dissipation

4 Dimensionless constant in the uw cospec-
trum

o Tilt angle

K von Kérman constant

A Characteristic instrument length scale

My First-order angular response parameter

Mo Second-order angular response parameter

p Density of air

0, Density of cup rotor

T Time lag

o Cup anemometer time constant

b Instantaneous wind direction in (E, N) co-
ordinates

(8¢?) Wind direction variance
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