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The cup anemometer is a first-order line filter in the direction of the mean wind speed U with the
distance constant �◦. This means that there is as reduction of the measured variance due to this
filtering. In the limit �◦ → 0 this reduction goes to zero and it increases with �◦. We want to
determine the loss of variance and standard deviation as functions of �◦.

The true variance in the flow direction σ 2◦ is equal to the area under the spectrum F(k), where k

is the wave number. We have

σ 2◦ =
∞∫

−∞
F(k) dk. (1)

As discussed by Kristensen (1998), the cup anemometer can be considered a spatial, one-dimensional
low-pass filter with the transfer function

Hlp(�◦, k) = 1

1 + k2�2◦
. (2)

The measured variance is then

σ 2 =
∞∫

−∞
Hlp(�◦, k)F (k) dk =

∞∫
−∞

F(k) dk

1 + �2◦k2
. (3)

We see that the reduction is most pronounced at large wave numbers and this suggests that we
reformulate (3) as follows

σ 2 = σ 2◦ −
∞∫

−∞
HhpF(k) dk, (4)

where

Hhp(�◦, k) = 1 − Hlp(�◦, k) = �2◦k2

1 + �2◦k2
(5)
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is the corresponding high-pass filter which accounts for the “loss” of variance from the small
eddies. It is this lack of resolution by the anemometer which causes the deficit of the measured
variance.

The detailed behavior of F(k) at low wave numbers is unimportant and we need to specify it in
the inertial subrange where there is local isotropy. In this domain we use the standard formulation

F(k) = α1

2
ε2/3k−5/3, (6)

where ε is the rate of dissipation of specific kinetic energy (or just the dissipation) and α1 �
0.56 the Kolmogorov constant for the streamwise velocity fluctuations (Kristensen et al. 1989).
Inserting (6) in (4) we get

σ 2 = σ 2◦ − πα1√
3

(ε�◦)2/3. (7)

This means that the loss of variance can be estimated by

Δ[σ 2] ≡ σ 2◦ − σ 2 = πα1√
3

(ε�◦)2/3. (8)

If we were interested in the loss of standard deviation we get the approximate expression from
(7)

σ =
[
σ 2◦ − πα1√

3
(ε�◦)2/3

]1/2

� σ◦ − πα1

2
√

3

(ε�◦)2/3

σ◦
(9)

so that the loss becomes

Δ[σ ] ≡ σ◦ − σ = πα1

2
√

3

(ε�◦)2/3

σ◦
. (10)

The dissipation can be estimated quite accurately in the neutral atmospheric surface layer (strong
winds). We have

ε = u3∗
κz

, (11)

where κ � 0.4 is the von Kármán constant, z the measuring height, and u∗ the friction velocity.
We see that we must specify the friction velocity u∗ and also σ◦, in the case of loss of standard de-
viation. There is an empirical relation between the standard deviation σ◦ and the friction velocity.
According to Panofsky & Dutton (1984, p. 160)
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Table 1: Loss of variances and of standard deviations by cup anemometers and a sonic at z =
10 m.

�◦ (m) Δ[σ 2]/σ 2◦ Δ[σ ]/σ◦

Typical cup anemometer 3.9 17% 9%

WindsSensor P2546 1.8 10% 5%

Solent sonic 0.05 4% 2%

σ◦
u∗

= 2.39 ± 0.03 (12)

We can now quantify the relative loss of variance and of standard deviation by

Δ[σ 2]
σ 2◦

= πα1√
3 κ2/3

(
u∗
σ◦

)2 (
�◦
z

)2/3

� 0.327

(
�◦
z

)2/3

(13)

and

Δ[σ ]
σ◦

= πα1

2
√

3 κ2/3

(
u∗
σ◦

)2 (
�◦
z

)2/3

� 0.164

(
�◦
z

)2/3

. (14)

Let us, as an example, consider a cup anemometer (WindSensor, P2546) with �◦ = 1.8 m. We
get Δ[σ 2]/σ 2◦ ≈ 10% and Δ[σ ]/σ◦ ≈ 5%.

The theory outlined here is based on the fortunate fact that we need to consider only the short-
waved part of the turbulence. The long-waved/low wave-number part of the spectrum F(k) is
not well known. But all cup anemometers that work at all will, irrespective of their distance
constants, measure the same velocities at long wavelength. Therefore the loss of variance for
different anemometers can be easily related to their distance constants and the measuring height
z. An anemometer with a high spatial resolution is the sonic anemometer, which measures the
velocity along three acoustic 15 cm paths to obtain the wind velocity in all three dimensions. We
have estimated that the transfer function for this sonic corresponds to a cup anemometer with a
distance constant of 0.05 m.

The losses of variance and of standard deviation at z = 10 m are given in Table 1.
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Figure 1: The transfer functions for the WindSensor P2546 cup anemometer with the distance
constant �◦=1.8 m and a typical cup anemometer with �◦ = 3.9 m. These are shown with solid
lines together with an eye-ball fit to the many dotted-line sonic transfer functions, where each
curve corresponds to the angle between the sonic path and the mean wind. An eye-ball fit to the
mean suggests that �◦ = 0.05 m. The abscissa is made dimensionless by means of the distance
constant of the WindSensor P2546 cup anemometer.
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